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1. Introduction 

Music and physics are two fields that are inseparable from each other. Musical sound is 

nothing but longitudinal waves produced by periodic vibrations. All musical instruments 

produce sound by the vibration of matter, which can be a string, an air column or a stretched 

membrane. This essay investigates the sound produced by the most popular stringed 

instrument, the guitar.  

The frequency of the sound produced by a guitar string is one its most important 

characteristic because each note in a musical scale has a definite pitch which is determined by 

the frequency, for example, the note “A4” has a fundamental frequency of 440 Hz. Therefore, 

the main objective of this essay is to investigate the factors that affect the fundamental 

frequency produced by the guitar string and attempt to answer the question, “How does a 

change in temperature affect the fundamental frequency of a guitar string?”. One of the 

biggest dilemmas that guitarists face is that a guitar generally goes out of tune when exposed 

to heat. This adverse effect caused by a change in temperature is what inspired me to write 

this essay. 

In this essay, several established relationships will be modified to ultimately derive a 

relationship between a change in temperature and the fundamental frequency of a guitar 

string. By conducting an experiment, empirical data will be collected to first confirm a 

modified version of the established relationship between the fundamental frequency of a 

string and factors like length of the string and tension experienced by it. Then, empirical 

frequency for different amounts of change in temperature will be compared with the 

predicted values from theory, hence concluding whether the theoretical derivation is correct. 

 

 

3
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1.1 Flow of Investigation 

 

Thermodynamics

Theory
- Linear thermal expansion 

- Deriving a relationship between f 2 and 
∆	T (change in temperature)

-Work function, its dependence on 
temperature and effect on frequency

Experiment
-Varying the temperature of the string and 
using 'Decibel X' app, determining the 
frequency of sound produced 

Mechanics

Theory
- Wave equation: tension (F) and length 

(L) and their relationship with 
fundamental frequency (f) 

- Young's Modulus of a material

Experiment
-Determining the tension in each string by 
varying the length and obtaining a 
relationship between f and 1/L

Acoustics

Theory
- The structure of a guitar

- Material used in the string 
- The fundamental frequency of the string

Experiment
- D'Addario EX120 Nickel Strings Guitar
-E2, G3 and E4 Strings 
-Fender CD-60S guitar

Topic of Investigation
Temperature and Frequency of a guitar string 

(Acoustics, mechanics and thermodynamics of a string)
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2. Guitar Fundamentals 

 

As shown in the diagram, a guitar has six strings, which are named according to the note they 

play when plucked. From top to bottom, these names are, “E2”, “A2”, “D3”, “G3”, “B3” and 

“E4”. All the strings are stretched between the nut and the saddle. A string’s thickness or 

diameter is called string gauge. The tension in the strings can be increased or decreased by 

rotating the tuning pegs and the effective length of the string that is vibrating is changed by 

the guitarist when he/she places a finger on the “frets” or the divisions made on the guitar’s 

neck. 

3. Frequency of a standing wave 

Since a guitar string is fixed between two points, the sound produced by it consists of 

standing waves. This section investigates the mechanics of a standing wave. The wave 

equation provides a description of all mechanical waves and the equation in one space 

dimension is written as1: 

!!"

!#!
= %!

!!"

!&!
 - 3.1 

Figure 1: A diagram illustrating a guitar and its key features 

Neck 
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(where ‘y’ is the vertical displacement of a wave at a point (m), ‘x’ is the horizontal 

distance from the origin to that point (m), t is the time at which a displacement ‘y’ occurs (s) 

and ‘c’ is the speed of propagation of the wave (ms-1) ) 

This equation is a second order linear partial differential equation. Partial derivatives are 

used when a function depends on two variables. It is simply the derivative of a function with 

respect to one variable while assuming the other variable is constant. In this case, ‘y’ is a 

function of both ‘x’ and ‘t’. 

The equation for a standing wave in a string can be represented as2: 

"	(&, #) = +	,-.	/"#	,-.	
.0&

1
 

(where A is the amplitude of the wave (m), n is the number of the harmonic, L is the length 

of the string (m), and /! is the angular frequency of the nth harmonic (rad s-1)) 

Using partial differentiation, 

2
!"

!&
3
#
= + sin/"#	

.0

1
cos

.0&

1
 

!!"

!&!
= (−+ sin/"# sin

.0&

1
)	
.!0!

1!
	 

2
!"

!#
3
$
= +	/" cos/"#	 sin

.0&

1
 

!!"

!#!
= (−+ sin/"# sin

.0&

1
)	/"

! 

	The wave speed (c) is directly proportional to the square root of tension force in the string 

(:) and inversely proportional to the square root of linear mass density (;). The following 

equation has been derived3: 

% = <
:

;
 

Substituting equations 3.2, 3.3 and 3.4 into the wave equation (3.1) we get, 

- 3.2 

- 3.3 

- 3.4 
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/"
! =	

:

;
	=
.!0!

1!
> 

/" =	
.0

1
<
:

;
 

?" =	
.

21
<
:

;
 

For the first harmonic (the fundamental frequency), we can write this equation for n=1: 

? = 	
1

21
<
:

;
 

This equation tells us that the fundamental frequency of any stretched string depends on 

three factors: the tension force (F), the length of the string (L) and the linear mass density (;) 

 

4. Young’s Modulus 

Young’s modulus or Elastic modulus is the fundamental property of a material which can 

be explained as the stiffness in the material. It basically tells us how easily a material can be 

stretched. For a stretched string, like a guitar string, the Young’s modulus is given by:  

B =
,#CD,,

,#CE-.
				 

(where Y is the Young’s modulus, stress can be written as tension (F) per unit cross 

sectional area (A) and strain is the (change in length (∆1 ) /original length	(1)))  

Therefore, we have,  

B =
:

+
×
1

∆1
					 

The units for Young’s modulus are N m-2 or Pa. 

- 3.5 

- 4.1  
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5. Linear Thermal Expansion 

It’s a common physical fact that upon heating, metal objects can expand. Assuming the 

thickness remains constant, the change in length due to a temperature change can be 

calculated by the following equation: 

∆1 = H1∆I 

(Where α is the coefficient of thermal expansion (K-1) and has a specific value for every 

material, L is the original length of the string (m), ΔT is the change in temperature (K) and 

ΔL is the change in length of the string (m)) 

Thus, when a metal guitar string’s temperature is increased, it tends to expand. However, the 

string is fixed between two points (refer to Figure 1), therefore this ultimately leads to a 

change in the tension force experienced by the string which will be discussed in detail in 

Section 8.  

6. Experimental Procedure and Data Collection 

An experiment is designed to study the relationship between the frequency (f) of three 

guitar strings, “E4, G3 and E2”, their length (L), tension (F) and the change in temperature (T). 

 

 

 

 

 

 

 

 

Figure 2: A diagram of materials required for the experiment  

- 5.1  

in standard tuning
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Set-up:  

Figure 2 represents all the materials and equipment required for the experiment. D'Addario 

EXL120 Nickel Wound Electric Guitar Strings were used for the experiment. Only three 

strings were inserted into the Fender CD-60S guitar and their gauges or diameters are, 2.54 × 

10-3 m, 4.32  × 10-4 m, and 1.06 × 10-3 m for the strings E4, G3, and E2 respectively. A mobile 

application called “Decibel X” is used as a frequency analyser tool. 

Procedure:  

First, using the ruler, the distances between the nut and the saddle, the first fret and the 

saddle, the second fret and the saddle and so on up to the 6th fret and the saddle were 

measured (with an uncertainty of ± 0.0005m). Then the E4 string was plucked using the 

guitar pick such that it vibrates from the nut to the saddle and the frequency of the sound 

wave produced by it was noted down by the mobile app by manually tapping on the spectrum 

of the wave observed. Then a finger was placed on the first fret of the string such that the 

vibrating length decreases to the distance between the first fret and the saddle, and the 

process was repeated. Similarly, a finger was placed on the 2nd, 3rd, 4th and 5th frets of the 

string and the process is repeated. For each variation of length, a total of 5 frequency readings 

were taken by repeatedly plucking the string and tapping the frequency spectrum on the app 

to reduce random errors. The same process was repeated for each string.  

After obtaining the value of tension in each string at room temperature (assumed as 295.5 K), 

the blow-dryer was used to heat each string to the temperatures of 300.5 K, 305.5 K, 310.5 K, 

315.5 K, 320.5 K, 325.5 K, and 330.5 K which were measured by the non-contact 

thermometer. It was extremely difficult to maintain steady temperatures, and a fluctuation of 

about ±0.5 K was observed which was taken as the uncertainty in the temperature. For each 

temperature, the strings were plucked without pressing any fret and the frequency of sound 

produced was noted. 5 repetitions were done to reduce random errors.  

(Version - V4.4.2)7
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Sample of the raw data collected is shown below in Table 1 and Table 2. Refer to 

Appendix 1 and Appendix 2 for the full tables. 

Table 1: Sample data for the frequency recorded in different trials while varying the length 

(L) of the strings at room temperature 

String 
L (m) 

±0.0005m 

Frequency (Hz) 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

E4 

0.644 329.12 321.45 327.64 325.82 320.19 

0.611 345.34 349.07 341.53 352.24 342.41 

0.576 366.32 368.54 372.05 364.92 367.04 

G3 

0.644 201.21 199.83 195.64 194.02 197.98 

0.611 213.45 204.39 210.75 208.68 201.93 

0.576 229.13 228.13 221.35 232.81 236.59 

E2 

0.644 85.36 80.07 81.53 82.88 83.28 

0.611 90.22 87.69 88.25 83.52 86.83 

0.576 92.55 95.47 88.76 94.98 91.51 
 

Table 2: Sample data for frequency recorded at different temperatures (T) while keeping 

the length of the strings constant  

String T (K)  
(+- 0.5 K) 

Frequency (Hz) 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

E4 
295.5 329.12 321.45 327.64 325.82 320.19 
300.5 324.14 326.84 323.79 322.36 319.92 
305.5 321.06 325.78 320.67 323.28 321.79 

G3 
295.5 201.21 199.83 195.64 194.02 197.98 
300.5 194.16 195.31 193.48 196.37 194.83 
305.5 192.27 193.82 191.34 192.99 191.76 

E2 
295.5 85.36 80.07 81.53 82.88 83.28 
300.5 78.21 76.67 79.36 77.94 76.13 
305.5 70.89 75.73 73.23 71.04 71.36 
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7. Determining the tension in three guitar strings at room temperature 

Each guitar string has the same stretched length between the nut and the saddle (refer to 

Figure 1). Then how do the open strings produce sounds of different frequencies? This is 

because each string has a different tension force acting on it and a different linear mass 

density. The relationship between the fundamental frequency and the tension force on the 

string has already been calculated (equation 3.5). This equation can be modified, and 

empirical data can be used to determine the tension in each of the three strings of the guitar 

used in the experiment. 

 

7.1 Theoretical relationship  

 Using the definition of linear mass density, equation 3.5 can be written as: 

? =
1

21
<
:1

K
		 

					=
1

21
<
:1

LM
			=

1

21
<
:

L+
			=

1

21
<

:

L0C!
 

? =
1

1
<

:

L0N!
 

(where m, L,	V, A, r and d represent the mass (kg), density (kg m-3), volume (m3), area of 

cross section (m2), the radius of the string (m) and the diameter of the string (m) respectively) 

 

7.2Empirical data and analysis 

From Table 1, we can calculate the variation of frequency with length at room temperature 

for the three different strings. Table 3 shows the sample data from these calculations (refer to 

Appendix 3 for full table). All calculations are explained with a sample calculation. 

∵ 	; =
K

1
	 

- 7.1  
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Table 3: Sample data of length (L), reciprocal of length (1/L), average frequency (favg) and 

their uncertainties (∆1/L and ∆ f) 

String 
L (m) ±5 × 

10-4 m 

1/L 

(m-1) 

∆1/L 

(m-1) 

 favg 

(Hz) 

∆ f 

(Hz) 

E4 

0.6440 1.55 1.21 × 10-3 324.84 4.46 
0.6110 1.64 1.34× 10-3 346.11 5.35 
0.5760 1.74 1.51× 10-3 367.77 3.56 

G3 

0.6440 1.55 1.21 × 10-3 197.74 3.59 
0.6110 1.64 1.34× 10-3 207.84 5.76 
0.5760 1.74 1.51× 10-3 229.60 7.62 

E2 
0.6440 1.55 1.21 × 10-3 83.42 4.64 
0.6110 1.64 1.34× 10-3 87.30 3.85 
0.5760 1.74 1.51× 10-3 92.85 3.85 

Sample Calculation: (For string E4, at L = 0.6440 ± 0.0005 m) 

Reciprocal of Length 

P

Q
=

1

0.6440
≈ 1.55	m%&	 

Calculating the uncertainty of 1/L 

∆
P

Q
= 2

∆L

1
× 1003 ×	

1

1
×

1

100
	≈ 1.21 × 10%'	m%& 

Calculating average frequency  

Z()* =
∑ ?+
+,&
-
5

=
?& + ?! + ?' + ?. + ?-

5
 

=
329.12 + 321.45 + 327.64 + 325.82 + 320.19

5
≈ 324.84	Hz		 

Calculating the uncertainty of frequency   

The uncertainty of the device used to determine the frequency (mobile app) was negligible 

when compared to the human uncertainty, which was calculated as: 

∆	Z	 = 	
CE.cD

2
=
KE&-KdK	? − K-.-KdK	?

2
=
329.12 − 320.19

2
≈ 4.46	Hz	 

 

A graph representing all the data points, their uncertainties, a line of best fit, maxima and 

minima is plotted for each string and one of these graphs is given below (refer to Appendix 4 

and 5 for all graphs) 
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Graph 1: Data points of average frequency against the reciprocal of length of the string E4 

 

 

 

 

 

 

 

 

 

From the gradient of the graph, we can calculate the tension force being experienced by the 

string at room temperature.  

According to equation 7.1,  

gradient =! !
"#$!  = 208.71 

!
"#$!= 208.712 

For the E4 nickel string, 

L	= 8908 kg m−3 

d = 2.54 × 10-4 m 

: = 0(208.71)!(8908)(0.000254)! 

≈ 78.65	N 

Since this is the tension at room 

temperature, it can be denoted as F0.  

F0 = 78.65	N	 ± 11.31 N. 

Calculating the uncertainty of tension  

From maxima gradient, we have, 

 224.99 = !!"#$
"#$!  

!!"# =	0(224.99)2(8908)(0.000254)2 

≈ 91.40	N 

From minima gradient, we have, 

 195.19 = !!"%&
"#$!  

!!$% = 0(195.19)2(8908)(0.000254)2	 

≈ 68.79	N	Uncertainty = 
&"#$'&"%&

( =

)*.,-		'/0.1)
(  ≈11.31 N 

y = 208.71x + 3.1781
R² = 0.9971

y = 195.19x + 26.218

y = 224.99x - 28.979

300

320

340

360

380

400

420

440

460
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g

(H
z)
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Linear (Minima)
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Similarly, the tension forces in the G3 and E2 strings and their uncertainty can be calculated 

(refer to Appendix 4 and Appendix 5 for the other graphs) and are given below in Table 4. 

Table 4: The density (f) and diameter (d) of the three strings along with the tension (F0) 

and uncertainty in the tension (∆ F) at room temperature 

String f	(gh	i%0) d (m) F0 (N) ∆ F (N) 

E4 8908 2.54 ×10-4	 78.65 11.31 

G3 8908 4.32 ×10-4	 82.62 17.34 

E2 8908 1.06 ×10-3	 96.17 35.56 

 

The high uncertainty in the tension is caused by the random errors in the experiment 

which will be discussed further in the conclusion and evaluation section.   

The y-intercept of Graph 1 was supposed to be 0 according to the theoretical relationship 

between 1/L and f. However, the line of best fit has the y-intercept of 3.18. The y-intercept of 

the maxima and minima lines can be used to calculate the uncertainty of the y-intercept, 

(26.22 + 28.98)/2 = 27.6. Hence, the y-intercept is 3.18 ± 27.6. While the uncertainty is pretty 

high due to the random error, 0 does lie in that range. Similar calculations can be made with 

the y-intercepts of the other graphs (refer to Appendix 4 and 5) for the two other strings and 

0 always lies in the range of their uncertainties. Hence, the theoretical model for the 

relationship between length, tension and frequency has been proven by the empirical data.  
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8.Determining the temperature dependence of frequency  

Now that the relationship between length, tension and frequency has been established, we 

can look into the thermodynamics of a guitar string to determine how a change in temperature 

will affect its fundamental frequency. First, a theoretical model has been derived which is 

then verified empirically using the data obtained from the experiment. 

 

8.1 Theoretical model for the effect of temperature change on a string  

The length of a string varies with the tension force as well as a temperature change. If we 

consider the string to be a thermodynamic system with the variables L, F and T, the variable 

L is a function of both the tension (F) and the temperature (T). A change in length with a 

change in both tension and temperature can thus be calculated using partial differentiation.  

N1 = 2
!1

!I
3
1
NI +	2

!1

!:
3
2
N: 

From equation 5.1 we know, 

∆1 = H1∆I 

∆1

∆I
= H1 

This equation represents a change in length with a change in temperature. However, we 

know that length is not only dependent on temperature, but also on tension. Thus, this 

equation is only true when tension is considered to be constant and can be rewritten as-  

2
!1

!I
3
1
= H1 

From equation 4.1,	

B =
:

+
×
1

∆1
					 

- 8.1 

- 8.2 



 16 

The tension F is caused by the change in length and the initial tension F0 = 0, when ∆1 =

0. Thus change in tension, ∆F = F - F0 = F. The previous equation can be rewritten as- 

B =
∆:

∆1
×
1

+
		 

∆1

∆:
=

1

+	B
 

2
!1

!:
3
2
=

1

+	B
 

Substituting equation 8.2 and 8.3 into equation 8.1, 

N1 = 	H1NI +
1

+B
N: 

N1

1
= 	HNI +

1

+B
N: 

We can solve equation 8.4 for dF, which gives, 

N: =
+B

1
N1 − +BHNI 

This equation tells us how the tension in a string varies with a change in length and 

temperature. However, a guitar string is fixed between two points so, the length of the string 

remains the same (N1 = 0), while the tension changes because of a temperature change. 

After integrating the previous equation, we get, 

j N:
1

1!
= j −+BHNI

2

2!
 

: − :3 = −+BH(I − I3) 

: = :3 − +BH∆I 

 (where :3	and F are the initial and final tension (N) and T0 and T are the initial and final 

temperature(K)) 

- 8.3 

- 8.4 

- 8.5 
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The ratio of the fundamental frequency of the guitar string after changing its temperature by 

∆" and the initial fundamental frequency can thus be calculated using the equation 3.5 and 

equation 8.5,  

#
#!
=	

1
2(	)

*! − ,-.∆"
/ 0

" #$

1
2(	)

*!
/ 0

" #$
 

=	11 −	,-.∆"*!
2
" #$

 

Squaring both sides, 

1##!
2
#
= 	1 −	,-.∆"*!

 

## =	#!# −	
,-.#!#
*!

∆" 

Equation 8.6 depicts the relationship between the square of fundamental frequency and a 

change in temperature of the string. We will now verify this equation using empirical data. 

 

8.2 Empirical data and analysis  

From Table 2, we can calculate the change in temperature, the average fundamental 

frequency of the string vibration, and the square of average frequency for each observation. 

To reduce uncertainty in the fundamental frequency values, some trials were discarded. Table 

5 shows sample data with all these quantities along with their uncertainties (refer to 

Appendix 6 and Appendix 7 for the full table and the discarded values of frequency 

respectively). It must be noted that in Table 5, ∆" represents a change in temperature while 

∆# and ∆## represent the uncertainty in the fundamental frequency and the uncertainty in the 

square of fundamental frequency respectively. 

-8.6 
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Calculation of Expected gradient from theoretical model 

cCEN-D.# = =−
+BH?3

!

:3
> 

For string E4,  

A= 
23*
, =	2	((.5,	×*-

+,)*
, =	4.52 × 10-8 m2 

Y = 2.05 × 1011 Pa (Young’s modulus of nickel)6 

H = 1.27 × 10-5 K-1 (coefficient of linear thermal expansion for nickel)6 

?3
! = 107273.72 Hz2 ±	1080.84 Hz2 (from Table 5) 

:3 = 78.65 N ± 11.31 N (from Table 4) 

theoretical gradient  

= -!.#$	×	'(
!"	×	$.(#	×	'(##	×	'.$)	×'(!%	×	'()$)*.)$	

)+.,#	 	 

 = - 160.50 K-1 

uncertainty = k∆	8!
"

8!"
	+ 	

∆1!
1!
l × gradient = k &3@3.@.

&3E!E'.E!	
	+ 	

&&.'&
E@.A-

l 	× 	160.5 = 24.70	K%&	 

 

 

Similarly, the graphs for the string G3 and E2 are shown below and Table 6  shows the 

comparison of theoretical and empirical values of gradient and y-intercept for each string, 

which have been calculated in the same way as it is done for the E4 string. 

 

 

 

 

 

5.07

5.07

180.04

180.04 7
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Graph 3: Data points of squared average frequency (f 2) against the change in temperature 

(∆T) for the string G3 

 

Graph 4: Data points of squared average frequency (f 2) against the change in temperature 

(∆T) for the string G3 
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Table 6: Comparison of theoretical value of gradient (mtheo) and y-intercept (btheo) with the 

empirical values (obtained from the Graph 2, 3 and 4), (memp) and (bemp). The uncertainty of 

each value is also shown. 

 

From Table 6, it is evident that for every string, the y-intercept of the line of best fit always 

lies in the range of the squared initial frequency. Moreover, even though the theoretical and 

empirical values of the gradient have high uncertainties (which will be addressed in the 

evaluation section), their values lie close to each other when their range is considered. The 

linear relationship predicted by the theoretical model can be clearly seen as the line of best fit 

is a straight line for every string with a high r2 value that tells us that the data points lie in 

close proximity to the line of best fit. Thus, the data from the graphs supports the theoretical 

model as the square of frequency decreases constantly from the initial squared frequency 

when the change in temperature is increased. 

 

String mtheo 
(K-1) 

!mtheo 
(K-1) 

memp 
(K-1) 

∆ memp 
(K-1) btheo (Hz2) ∆btheo 

(Hz2) bemp (Hz2) ∆ bemp 
(Hz2) 

E4 -180.04 27.70 -214.51 60.92 107273.72 1080.84 106089.00 1081.00 

G3 -177.22 40.78 -168.45 40.85 38368.97 775.68 38599.00 776.00 

E2 -152.25 62.26 -160.40 10.62 6714.16 263.03 6748.40 263.05 
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9. Correction of theoretical relationship  

In equation 8.6, it is assumed that the Young’s modulus (Y) and the area of cross section (A) 

remain constant when there is a change in temperature. However, this is not true in the real 

world. This section will consider the effect of temperature on the Young’s modulus and the 

area of cross section of the string and refine our model to describe the thermodynamics of a 

guitar string as it is. 

A guitar string is essentially a stretched metal wire and all the properties of a metal are 

correlated to its electron behaviour which is ultimately affected by the electron work function 

(n). The Young’s modulus of any metal is also dependent on its electron work function 

according to the equation4:  

B = 	onA 

(where o is a constant of proportionality whose value depends on the crystal structure of the 

metal and different values for most crystal structures have been determined5) 

 

Electron work function can be described as the energy that is required to withdraw an 

electron completely from the surface of the metal. When the temperature of the metal 

increases, the electrons get thermally excited and thus, lesser energy would be required to 

withdraw them from the metal surface. This relationship between work function and 

temperature has been derived as:  

n(I) = 	n3 − p
(qJI)

!

n3
 

(where n3 is the work function (J) at T=0, kB is the Boltzmann constant (J⋅K-1), p is another 

material property which is dependent on the crystal structure) 

These two equations (equation 9.1 and equation 9.2) allow us to determine the relationship 

between the Young’s modulus and a change in temperature: 

- 9.1 

- 9.2 

4
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B = 	o sn − p
(qJ∆I)

!

n
t

A

 

(where n is the work function of the metal at room temperature i.e., 295 K and ∆I is the 

change in temperature from the initial room temperature to some final temperature) 

The cross-sectional area of the string (A) varies with temperature due to the thermal 

expansion of the string. The radius of the string expands according to the equation: 

C = C3(1 + H	∆I) 

C! = C3
!(1 + H	∆I)! 

+ = +3	(1 + H	∆I)
! 

(where r0 is the initial radius of the string (m), A and A0 are the initial and final areas of cross 

section (m2)) 

Substituting equation 9.4 and equation 9.3 into equation 8.6, we get: 

?! = ?3
!
−
+3			oH?3

!

:3
∆I(1 + H	∆I)! sn − p

(qJ∆I)
!

n
t

A

 

This is a rather complex equation and was thus not used to plot the graph of change in 

temperature against square of frequency. Refer to Appendix 8 for the empirical verification 

of equation 9.5 and deviation in the value of frequency squared obtained by equation 8.6 and 

the value obtained by equation 9.5.  

 

 

 

 

 

 

 

- 9.3 

- 9.4 

- 9.5 
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10. Conclusion and Evaluation 

This investigation of the effect of temperature on the fundamental frequency of a guitar 

string has led to several interesting conclusions.  

Firstly, a theoretical investigation revealed the different factors that have an impact on the 

frequency of a guitar string, i.e., the length, tension force, and the linear mass density. Further 

exploration of these factors revealed how they depend on several characteristics of the string, 

like its gauge and the Young’s modulus and coefficient of thermal expansion for the material 

of the string. 

Empirical evidence successfully proved this initial theoretical investigation and helped us 

calculate the tension in each string at room temperature. Building on this investigation, a 

theoretical model for the temperature dependence of frequency was developed which showed 

that when the string experiences an increase in temperature, the tension force experienced by 

it is decreased according to the equation !=!0 −"#$∆%, (if the cross-sectional area and the 

Young’s modulus are assumed to be constant) and this decrease in tension is what leads to a 

decrease in the fundamental frequency of the string. 

Experimental analysis of nickel strings successfully proved our theoretical model, as despite 

of the high uncertainties in the expected and actual values of gradients and y-intercepts of the 

line of best fit in Graphs 2, 3 and 4, the linear relationship between the change in temperature 

(∆%) and the square of frequency (f 2) was evident in the straight-lined graphs.  

A more accurate version of the theoretical model was derived in Section 9 which takes the 

temperature dependence of the Young’s modulus and the area of cross section into account. 

However, the effects of the temperature dependence of these quantities on the frequency are 

minimal when the temperature change isn’t too high (Refer to Appendix 8). Therefore, the 

initial theoretical model can be used in most cases to calculate the effect of temperature on 

the frequency of sound produced by not just a guitar string, but any stretched string. 
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Thus, it can be concluded from this investigation that the frequency of a guitar string 

decreases with a positive change in the temperature and this decrease in frequency is 

dependent on the string’s diameter and the properties of its material, both of which are also 

affected by the change in temperature. However, there were many methodological issues and 

uncertainties in this investigation that must be addressed here.  

The major source of uncertainties in this investigation is the random errors in the 

measurement of frequency. The mobile app “Decibel X” used in the experiment relied on the 

reaction time of the person handling the app (the person had to manually tap on the 

smartphone screen each time to reveal the frequency reading at an instant). This led to a high 

uncertainty in the calculated tension experienced by each string (Table 4) and a high 

uncertainty in the gradient of Graphs 2, 3 and 4. Moreover, the app relied on the microphone 

of the smartphone to record the frequency which might not be as accurate as a professional 

microphone. To eliminate this error, a scientific frequency counter or spectrum analyser 

software can be used which does not rely on reaction time to obtain the reading of frequency. 

Secondly, heating the guitar strings by using a hairdryer was not the most efficient method 

as it did not ensure that the string was uniformly heated. While the fluctuations due to the 

inefficiency of the equipment were recorded as uncertainties in the temperature, the readings 

of the temperature in Table 2 are not an accurate depiction of the temperature of the entire 

string. This inefficiency in the methodology is one of the reasons that the theoretically 

predicted gradient for Graphs 2, 3 and 4 varied greatly from the actual gradient (apart from 

the inaccuracy in the original theoretical model). A more efficient method to conduct the 

experiment would be creating an artificial guitar, immersing it in heated water with 

controlled temperature and measuring the frequency of sound produced by the vibrations of 

the string using an underwater frequency detecting equipment. 
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Moreover, there was no way to directly measure the tension force experienced by each 

string at room temperature which was used in theoretical calculations. We had to use indirect 

calculations involving length and frequency which caused a high uncertainty in the 

theoretical prediction of the gradients of Graphs 2, 3 and 4.  

The scope of data could have been increased by using strings of different materials like 

nylon, aluminium and steel which are all popular guitar string materials, but this investigation 

focussed only on nickel strings. This investigation can be extended by experimentally 

exploring the equation derived in Section 9, by comparing different string materials and the 

effect of temperature on their frequencies or by exploring other factors like air pressure and 

friction which might affect the frequency of a guitar string. 
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11. Appendix 1: Full table of Table 1 

 

 

String 
L (m) 

±0.0005m 

Frequency (Hz) 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

E4 

0.644 329.12 321.45 327.64 325.82 320.19 

0.611 345.34 349.07 341.53 352.24 342.41 

0.576 366.32 368.54 372.05 364.92 367.04 

0.545 387.16 383.21 381.74 389.62 380.38 

0.518 411.26 407.34 405.86 409.72 407.53 

0.482 434.68 432.04 436.82 437.76 431.14 

G3 

0.644 201.21 199.83 195.64 194.02 197.98 

0.611 213.45 204.39 210.75 208.68 201.93 

0.576 229.13 228.13 221.35 232.81 236.59 

0.545 239.17 245.29 241.47 239.03 242.68 

0.518 253.09 249.73 242.39 241.56 246.14 

0.482 261.58 266.93 264.52 262.31 260.28 

E2 

0.644 85.36 80.07 81.53 82.88 83.28 

0.611 90.22 87.69 88.25 83.52 86.83 

0.576 92.55 95.47 88.76 94.98 91.51 

 0.545 97.82 99.78 100.04 97.18 93.14 

 0.518 102.91 105.06 104.26 106.82 100.45 

 0.482 110.60 113.87 108.66 114.09 109.95 

29
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12. Appendix 2: Full table of Table 2 

String 
T (K)  

(+- 0.5 K) 

Frequency (Hz) 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

E4 

295.5 329.12 321.45 327.64 325.82 320.19 

300.5 324.14 326.84 323.79 322.36 319.92 

305.5 321.06 325.78 320.67 323.28 321.79 

310.5 322.18 320.41 319.09 321.33 319.67 

315.5 319.31 317.58 321.24 318.86 316.42 

320.5 318.21 316.23 317.91 316.87 315.36 

325.5 315.83 316.12 317.71 316.89 315.91 

330.5 314.62 313.44 315.28 313.68 316.78 

G3 

295.5 201.21 199.83 195.64 194.02 197.98 

300.5 194.16 195.31 193.48 196.37 194.83 

305.5 192.27 193.82 191.34 192.99 191.76 

310.5 188.84 191.02 190.56 191.71 189.19 

315.5 188.13 189.42 186.93 189.04 187.48 

320.5 184.57 186.24 184.82 185.32 187.11 

325.5 182.79 184.02 181.53 183.84 184.44 

330.5 181.12 178.68 179.16 179.57 182.31 

E2 

295.5 85.36 80.07 81.53 82.88 83.28 

300.5 78.21 76.67 79.36 77.94 76.13 

305.5 70.89 75.73 73.23 71.04 71.36 
 310.5 67.16 64.28 68.46 66.18 65.81 
 315.5 62.48 63.06 58.83 59.21 60.17 
 320.5 54.73 57.12 53.31 50.78 52.44 
 325.5 45.68 42.59 45.09 40.86 41.39 
 330.5 35.32 37.63 32.14 34.05 35.19 

 

30
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13. Appendix 3: Full Data for Table 3 

String L (m) ±5 × 
10-4m 

1/L 
(m-1) 

∆1/L 
(m-1) 

 favg 
(Hz) 

∆ f 
(Hz) 

E4 

0.6440 1.55 1.21 × 10-3 324.84 4.46 

0.6110 1.64 1.34 × 10-3 346.11 5.35 

0.5760 1.74 1.51 × 10-3 367.77 3.56 

0.5450 1.83 1.68 × 10-3 384.42 4.62 

0.5180 1.93 1.86 × 10-3 408.34 2.70 

0.4820 2.07 2.15 × 10-3 434.49 3.31 

G3 

0.6440 1.55 1.21 × 10-3 197.74 3.59 

0.6110 1.64 1.34 × 10-3 207.84 5.76 

0.5760 1.74 1.51 × 10-3 229.60 7.62 

0.5450 1.83 1.68 × 10-3 241.53 3.13 

0.5180 1.93 1.86 × 10-3 246.58 5.76 

0.4820 2.07 2.15 × 10-3 263.12 3.32 

E2 

0.6440 1.55 1.21 × 10-3 83.424 4.64 

0.6110 1.64 1.34 × 10-3 87.302 3.85 

0.5760 1.74 1.51 × 10-3 92.85 3.85 

 0.5450 1.83 1.68 × 10-3 97.59 3.45 

 0.5180 1.93 1.86 × 10-3 103.90 3.18 

 0.4820 2.07 2.15 × 10-3 111.43 2.71 
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14. Appendix 4: favg vs 1/L Graph for G3 String 

 

15. Appendix 5: favg vs 1/L Graph for E2 String 
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16. Appendix 6: Full Data for Table 5 

String 
T (K)  

(± 0.5 K) 
∆T (K) 

(±1.0 K) 
favg (Hz)  

∆ f 
(Hz) f 2 (Hz2) ∆ f 2 (Hz2) 

 

E4 

295.5 0.0 327.53 1.65 107273.72 1080.84  

300.5 5.0 323.43 0.89 104606.96 575.70  

305.5 10.0 321.70 1.30 103490.89 839.64  

310.5 15.0 320.125 1.12 102480.02 717.08  

315.5 20.0 318.0425 1.445 101151.03 919.14  

320.5 25.0 316.916 1.425 100435.76 903.21  

325.5 30.0 316.492 0.94 100167.19 595.00  

330.5 35.0 314.76 1.67 99073.86 1051.30  

G3 

295.5 0.0 195.88 1.98 38368.97 775.68  

300.5 5.0 194.44 0.92 37808.86 355.83  

305.5 10.0 192.44 1.24 37031.61 477.24  

310.5 15.0 189.90 1.09 36062.96 413.99  

315.5 20.0 188.20 1.24 35419.24 468.62  

320.5 25.0 185.61 1.27 34451.81 471.45  

325.5 30.0 183.32 1.46 33607.69 533.47  

330.5 35.0 180.17 1.82 32460.51 654.01  

E2 

295.5 0.0 81.94 1.60 6714.16 263.03  

300.5 5 77.24 1.04 5965.63 160.65  

305.5 10 71.63 1.17 5130.86 167.61  

 310.5 15.0 65.86 1.44 4337.21 189.67  

 315.5 20.0 60.17 1.82 3620.73 219.63  

 320.5 25.0 52.82 1.98 2789.42 208.62  

 325.5 30.0 42.48 2.12 1804.76 179.70  

 330.5 35.0 34.18 1.59 1167.93 108.68  

 

33



 32 

17. Appendix 7: Discarded values of frequency 

String T (K)  
(+- 0.5 K) 

Frequency (Hz) 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

E4 

295.5 329.12 321.45 327.64 325.82 320.19 

300.5 324.14 326.84 323.79 322.36 319.92 

305.5 321.06 325.78 320.67 323.28 321.79 

310.5 322.18 320.41 319.09 321.33 319.67 

315.5 319.31 317.58 321.24 318.86 316.42 

320.5 318.21 316.23 317.91 316.87 315.36 

325.5 315.83 316.12 317.71 316.89 315.91 

330.5 314.62 313.44 315.28 313.68 316.78 

G3 295.5 201.21 199.83 195.64 194.02 197.98 
 300.5 194.16 195.31 193.48 196.37 194.83 

305.5 192.27 193.82 191.34 192.99 191.76 

310.5 188.84 191.02 190.56 191.71 189.19 

315.5 188.13 189.42 186.93 189.04 187.48 

320.5 184.57 186.24 184.82 185.32 187.11 

325.5 182.79 184.02 181.53 183.84 184.44 

330.5 181.12 178.68 179.16 179.57 182.31 

E2 

295.5 85.36 80.07 81.53 82.88 83.28 

300.5 78.21 76.67 79.36 77.94 76.13 

305.5 70.89 75.73 73.23 71.04 71.36 
 310.5 67.16 64.28 68.46 66.18 65.81 
 315.5 62.48 63.06 58.83 59.21 60.17 
 320.5 54.73 57.12 53.31 50.78 52.44 
 325.5 45.68 42.59 45.09 40.86 41.39 
 330.5 35.32 37.63 32.14 34.05 35.19 

 

The readings that have been stroked through are the ones that were discarded to reduce 

uncertainty. 
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Appendix 8: Empirical verification of Equation 9.5 and Comparison with 
Equation 8.6 

 

In order to verify equation 9.5, a sample reading was chosen from Table 5 and put into the 

equation. 

At T = 305.5 K for the E4 

string,  

∆"= 10.0 K 

f0 2 = 107273.72 Hz 

A0= 5.07 × 10-8 m2  

$ = 1.27 × 10-5 K-1 

F0 = 78.65 N  

% = 1.12 × 107 Pa eV-6 

& = 5.01 eV 

' = 318  

According to equation 9.5,  

(! =	("! −	
,"%$("!
F"

	∆"(1 + $∆")! 2& − ' (k#∆")
!

& 4
$
	 

Using the values of variables for the string, 

,"%$("!
F"

= 5.07	 ×	10%& 	× 1.12	 ×	10' × 1.27	 ×	10%( × 107273.72	
78.65 = 9.83 ×	10%)	 

∆"(1 + $∆")! = 10(1 + 1.27	 ×	10%(	 × 10)	! = 10.002	 
 

2& − ' (k#∆")
!

& 4
$
=	 25.01 − 	318	 (1.38 × 10

%!) × 10)!
5.01 		4

$
= 	15813.44 

Therefore, theoretically, 

(! = 	107273.72 − (9.83 ×	10%)	)(10.002	)(15813.44) = 105718.95 Hz2 

( = 325.14	Hz 

Empirical f = 321.70 Hz 

Percent error = 1.06 %  

Using equation 8.6,  

(! =	("! −	+!,-.!
"

/!
	∆" = 	105473.32	Hz2,  
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f = 324.76 Hz 

Comparing with f obtained from equation 9.5, 

Deviation= 0.38 Hz 

This is a very minor deviation, hence the original theoretical model (equation 8.6) is 

applicable for most temperatures (that aren’t much higher than the room temperature). 

  

 

 

 

 

	 


