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Mathematics: applications and interpretation - HL paper 3 questions
[134 marks]

1a. [7 marks]

This question will investigate the solution to a coupled system of differential equations
when there is only one eigenvalue.

It is desired to solve the coupled system of differential equations
xX=3x+y

y=-x+y

Show that the matrix (i 1 1) has (sadly) only one eigenvalue. Find this eigenvalue and an

associated eigenvector.

1b. [5 marks]
X
Hence, verify that (y) = (1 1) e?! is a solution to the above system.
1c. [5 marks]
. X\t ot - .
Verify that (y) = (—t + 1) e“" is also a solution.

1d. /3 marks]

The general solution to the coupled system of differential equations is hence given by

(;) =4 (i1) e’ +B (t—t + 1) e’

If initially at t = 0, x = 20, y = 10 find the particular solution.
le. [2 marks]

Find the values of x and y when t = 2.

1f. [3 marks]

As t — oo the trajectory approaches an asymptote.

Find the equation of this asymptote.

1g. [1 mark]

State the direction of the trajectory, including the quadrant it is in as it approaches this
asymptote.
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2a. [2 marks]

This question will investigate the solution to a coupled system of differential equations and
how to transform it to a system that can be solved by the eigenvector method.

It is desired to solve the coupled system of differential equations
x=x+2y-50
y=2x+y-40

where x and y represent the population of two types of symbiotic coral and t is time
measured in decades.

Find the equilibrium point for this system.
2b. [3 marks]

If initially x = 100 and y = 50 use Euler’s method with an time increment of 0.1 to find an
approximation for the values of x and y when t = 1.

2c. [2 marks]

Extend this method to conjecture the limit of the ratio i—' ast — oo.

2d. [3 marks]

Show how using the substitution X = x — 10, Y = y — 20 transforms the system of
X=X+2v

differential equations into .
Y=2X+Y
2e. [8 marks]

Solve this system of equations by the eigenvalue method and hence find the general

X
solution for (y) of the original system.

2f. [2 marks]
Find the particular solution to the original system, given the initial conditions of part (b).
2g. [2 marks]

Hence find the exact values of x and y when t = 1, giving the answers to 4 significant
figures.

2h. [2 marks]

Use part (f) to find limit of the ratio 3;’ ast — oo.

2i. [1 mark]
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With the initial conditions as given in part (b) state if the equilibrium point is stable or
unstable.

2j. [2 marks]

If instead the initial conditions were given as x = 20 and y = 10, find the particular
X

solution for (y) of the original system, in this case.

2K. [2 marks]

With the initial conditions as given in part (j), determine if the equilibrium point is stable or
unstable.
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3a. [3 marks]
This question will connect Markov chains and directed graphs.

Abi is playing a game that involves a fair coin with heads on one side and tails on the other,
together with two tokens, one with a fish’s head on it and one with a fish’s tail on it. She
starts off with no tokens and wishes to win them both. On each turn she tosses the coin, if
she gets a head she can claim the fish’s head token, provided that she does not have it
already and if she gets a tail she can claim the fish’s tail token, provided she does not have it
already. There are 4 states to describe the tokens in her possession; A: no tokens, B: only a
fish’s head token, C: only a fish’s tail token, D: both tokens. So for example if she is in state B
and tosses a tail she moves to state D, whereas if she tosses a head she remains in state B.

Draw a transition state diagram for this Markov chain problem.

3b. [1 mark]

Explain why for any transition state diagram the sum of the out degrees of the directed
edges from a vertex (state) must add up to +1.

3c. [3 marks]

Write down the transition matrix M, for this Markov chain problem.
3d. [4 marks]

Find the steady state probability vector for this Markov chain problem.
3e. [1 mark]

Explain which part of the transition state diagram confirms this.

3f. [2 marks]

Explain why having a steady state probability vector means that the matrix M must have an
eigenvalue of 1 = 1.

3g. [4 marks]

an
b
After n throws the probability vector, for the 4 states, is given by v,, = Cn where the
n
dn
numbers represent the probability of being in that particular state, e.g. b,, is the probability
1
of being in state B after n throws. Initially vy, = 8
0

Find vy, v,, v3, v,.

3h. [2 marks]
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Hence, deduce the form of v,,.

3i. [2 marks]

Explain how your answer to part (f) fits with your answer to part (c).
3j. [4 marks]

Find the minimum number of tosses of the coin that Abi will have to make to be at least
95% certain of having finished the game by reaching state C.
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4a. [8 marks]

This question will diagonalize a matrix and apply this to the transformation of a curve.

Let the matrix M =

N|lr N0
N[N |-

Find the eigenvalues for M. For each eigenvalue find the set of associated eigenvectors.

4b. [2 marks]

X
Show that the matrix equation (x y)M (

y) = (6) is equivalent to the Cartesian

equation %xz +xy + gyz = 6.

4c. [2 marks]

1 1
Show that \_/El and \/15 are unit eigenvectors and that they correspond to different
V2 V2
eigenvalues.
4d. [1 mark]
11 R
Hence, show that M \_/El */15 = \_/71 \/17 (g g)
vz V2 V2 V2

4e. [2 marks]

1 1
Let| Y2 V2] =g~
vz VZ

Find matrix R.

4f. [1 mark]

Show that M = R~1 (g g) R.

4g. [3 marks]
x X
LetR (y) = (Y)
Verify that (X Y)=(x Y)R™L
4h. [2 marks]

Hence, find the Cartesian equation satisfied by X and Y.
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4i. [2 marks]

Find the Cartesian equation satisfied by u and v and state the geometric shape that this
curve represents.

4j. [2 marks]

State geometrically what transformation the matrix R represents.
4K. [2 marks]

Hence state the geometrical shape represented by

the curve in X and Y in part (e) (ii), giving a reason.

41. [1 mark]

the curve in x and y in part (b).

4m. [2 marks]

Write down the equations of two lines of symmetry for the curve in x and y in part (b).
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5a. [3 marks]
This question explores methods to determine the area bounded by an unknown curve.

The curve y = f(x) is shown in the graph, for 0 < x < 4.4.

The curve y = f(x) passes through the following points.

It is required to find the area bounded by the curve, the x-axis, the y-axis and the line x =
4.4.

Use the trapezoidal rule to find an estimate for the area.
5b. [2 marks]

With reference to the shape of the graph, explain whether your answer to part (a)(i) will be
an over-estimate or an underestimate of the area.

5c. [3 marks]
One possible model for the curve y = f(x) is a cubic function.

Use all the coordinates in the table to find the equation of the least squares cubic regression
curve.

5d. [1 mark]

Write down the coefficient of determination.
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5e. [2 marks]

Write down an expression for the area enclosed by the cubic function, the x-axis, the y-axis
and the line x = 4.4.

5f. [2 marks]
Find the value of this area.
5g. [2 marks]

A second possible model for the curve y = f(x) is an exponential function, y = pe?*,
where p, g € R.

Show thatlny = gx + Inp.

5h. [1 mark]

Hence explain how a straight line graph could be drawn using the coordinates in the table.
5i. [5 marks]

By finding the equation of a suitable regression line, show that p = 1.83 and q = 0.986.
5j. [2 marks]

Hence find the area enclosed by the exponential function, the x-axis, the y-axis and the line
x =44,

10
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Mathematics: applications and interpretation - HL paper 3 questions
[134 marks]

1a. [7 marks]

Markscheme

3-14 1
-1 1-2

A —41+4=0>1-2)2=0 A1A1

=0=>3-DA-D+1=0 MIA1

So only one solution A =2 AGA1
C L)@=()=rra=o mi
So an eigenvector is (11) Al

[7 marks]
1b. [5 marks]

Markscheme
(i1 1) (11) =2 (£1)

S0 (i);-l_-l_);) - (31 1) (;) - (51 1) (11) et =2 (11) e M1A1A1

(e o

showing that (;C,) = (11) e?tisasolution AG

[5 marks]
1c. [5 marks]

Markscheme
3x+y)_ 3t—t+1 2t _ 2t+1 2t
(—x+y _(—t—t+1)e _(—2t+1)e M1A1

. 2t 2t 2t 1
Yo enize [ 7 e m1a1a1
v) = +(=t+1)2e” -2t +1

11
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. . x _ t 2t . .
Verifying that (y) = (—t + 1) e“" is also a solution

[5 marks]

1d. [3 marks]

Markscheme

Require (20) =4 (1 ) +B(})=>4=20, B =30

G)=20( e +30(C, , )ex az

[3 marks]

le. [2 marks]

Markscheme

t=2=x=4370, y=-2730(3sf) AlA1l
[2 marks]

1f. [3 marks]

Markscheme

Ast - oo, x =~ 30te?t, y ~ —30te?* MI1A1
so asymptoteisy = —x Al

[3 marks]

1g. [1 mark]

Markscheme

Will approach the asymptote in the 4th quadrant, moving away from the origin.

[1 mark]

12

AG

M1A1

R1
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2a. [2 marks]

Markscheme

x=0=>x+2y-50=0
) =>x=10, y =20 M1A1
y=0=2x+y-40=0

[2 marks]
2b. [3 marks]

Markscheme

Xpe1 = Xn + 0.1(x, + 2y, — 50)
Using y,11 = ¥ + 0.1(2x, + y,, — 40)
to,, =t, +0.1

Gives x(1) = 848, y(1) ~ 837 (3sf) M1A1A1
[3 marks]
2c. [2 marks]

Markscheme
By extending the table, conjecture that gim % =1 MI1A1

[2 marks]
2d. [3 marks]

Markscheme
X=x-10,Y=y-20=>X=xY=y R1

X =(X+10)+2(Y +20)-50= X +2Y
. M1A1AG
Y =2(X +10)+ (Y +20)-40=2X +Y

[3 marks]

2e. [8 marks]

Markscheme

1-4 2
2 1-2

A=-1 (g %) (Z) = (8) = q = —p an eigenvector is (11)

=0>(1-1)?—-4=0>1=-1or3 MI1A1A1

13
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A=3 (;2 32) (Z) = (8) = q = p an eigenvector is (1) M1A1A1

(5)=ae (L) +Be(}) = (5) =aet (L) +Bex () +(50) A1a1

[8 marks]
2f. [2 marks]

Markscheme

100=A+B+10
50=—-4A+B+20

(f,) = 30e"t (£1) + 603t (1) + (;8) Al

[2 marks]

=>A=30, B=60 M1

2g. [2 marks]

Markscheme

x(1) = 1226, y(1) = 1214 (4sf) A1A1
[2 marks]

2h. [2 marks]

Markscheme

Dominant term is 60e3t (1) solimZ=1 M1A1

tooo X

[2 marks]
2i. [1 mark]

Markscheme

The equilibrium point is unstable. R1
[1 mark]
2j. [2 marks]

Markscheme

20=A+B+10

10=-4+B+20-A=10F=0 M

14
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(f,) =10et (* )+ (%8) Al

[2 marks]
2K. [2 marks]

Markscheme
Ase™t - 0 ast — oo the equilibrium point is stable. R1A1

[2 marks]

15
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3a. [3 marks]

Markscheme

[3 marks]
3b. [1 mark]

Markscheme

You must leave the state along one of the edges directed out of the vertex. R1

[1 mark]
3c. [3 marks]

Markscheme
0 0

O NIRrNIRO

0
0
1

NIRr O NIRPRO

NIRrRNIR O

[3 marks]
3d. [4 marks]

16

M1A2
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Markscheme
0

N< ® 3
N
N

= O O O
N R 3

O NIRrNIRO
NIR O NIFRO

NIRNIRPR O

>w=0, x=0,, y=0, z=1 since w+ x +y+z =1 so steady state vector is

= O O O

A1R1A1
[4 marks]
3e. [1 mark]

Markscheme

There is a loop with probability of 1 from state D to itself. A1
[1 mark]

3f. [2 marks]

Markscheme

Let the steady state probability vector be s then Ms = 1s showing that (\lambda = 1\) is an
eigenvalue with associated eigenvector of s. A1R1

[2 marks]
3g. [4 marks]

Markscheme
0 0 0
0 1 1 1
1 - p -
E 4 8 16
vi=|i [ ve=lt s=[1] v=|21 A1A1A1A1
E 4 8 16
0 2 6 14
4 8 16
[4 marks]

3h. [2 marks]

17
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Markscheme
0

1
2n
v, =| 1 A2
21”.
2M—-2
21’1.

[2 marks]

3i. [2 marks]

Markscheme

0
limv, = the steady state probability vector = M1R1

n—-oo

o O

[2 marks]
3j. [4 marks]

Markscheme
Require 2:—;2 =>095= zin < 0.05=>n =6 (e.g.byuseoftable) RIM1A2

[4 marks]

18
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4a. [8 marks]

Markscheme
5 1
=4 2 2
: : =0=>(§_’1) _(l) =0=>-A=+-=1=20r3 MIMIA1A1
= 2 2 2 2 2
2 2
1 1
— 2 2 |(P\_ (0 _ _ 1
A=2 101 (q) = (O) = q=—p eigenvalues are of the form t (_1) M1A1
2 2
11
— T2 2z |(Py_ (0 B _ 1
A=3 1 1 (q) = (0) = q=p eigenvalues are of the form ¢ (1) M1A1
2 2

[8 marks]
4b. [2 marks]

Markscheme

(x ¥) (f,)=(6)=>(§x+§y §x+§y)(;)=(6) M1A1

NIk N0
N[N

5,241 1 5,2) = 552 5.2 —

> (i iy +3y) =@ =22 +ay+iy =6 4G
[2 marks]

4c. [2 marks]

Markscheme
1 1
ﬁ =%(£1) corresponding to A = 2, f =\/i§(1) correspondingtoA =3 R1R1
= V2
[2 marks]
4d. [1 mark]
Markscheme
1 n 1 £ L1\ /L
7 7 V2 V2 Bl B BCERCH TG
M 21 =2 -1 and M 1 =3 1 =M -1 1 - -1 1 (0 3) AIAG
5 % NG NG V2 V2 V2 V2
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[1 mark]
4e. [2 marks]

Markscheme

Determinantis1l. R = M1A1

S-Sl
L] BN

[2 marks]
4f. [1 mark]

Markscheme

2 0

MR =R ( -

2 0) so post multiplying by R gives M = R~ ( ) R M1AG

0 3
[1 mark]

4g. [3 marks]

Markscheme

N
O=0)=(5,, 5 -0 n=(ar-dr &reip)
2

1 1 1

1
and (x Y) ‘/j = (ﬁx —5Y HX + %y) completing the proof A1A4AG
V2

Sl Sl

[3 marks]
4h. [2 marks]

Markscheme

e« ymM(y)=©@=>x (2 DR()=@=>x n( )()=©

2 2
= (2X% 4+ 372) = (6)=>X?+Y?= 1 MiA1l

[2 marks]
4i. [2 marks]

20
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Markscheme
% =u, % = v = u? + v? = 1, a circle (centre at the origin radius of 1) A1A1
[2 marks]

4j. [2 marks]

Markscheme

A rotation about the origin through an angle of 45° anticlockwise. A1A1

[2 marks]

4K. [2 marks]

Markscheme

an ellipse, since the matrix represents a vertical and a horizontal stretch R1A1
[2 marks]

41. [1 mark]

Markscheme

an ellipse A1
[1 mark]
4m. [2 marks]

Markscheme
y=x,y=—x AlAl
[2 marks]

21
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5a. [3 marks]
Markscheme
Area = %(2 +2(5+4+15+47)+148) M1A1

Area = 156 units? A1l

[3 marks]

5b. [2 marks]

Markscheme

The graph is concave up, R1

so the trapezoidal rule will give an overestimate. A1l
[2 marks]

5c. [3 marks]

Markscheme

f(x) =3.88x3 — 12.8x% + 14.1x + 1.54 M1A2
[3 marks]

5d. [1 mark]

Markscheme

R?=0999 A1
[1 mark]
5e. [2 marks]

Markscheme

Area = [*(3.88x% — 12.8x% + 14.1x + 1.54)dx  A1A1
[2 marks]

5f. [2 marks]

Markscheme

Area = 145 units? (Condone 143-145 units?, using rounded values.) A2

[2 marks]

22
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5g. [2 marks]

Markscheme

Iny = In(pe?™) M1

Iny =Inp +In(e?™) A1
Iny=qgqx+Inp AG

[2 marks]

5h. [1 mark]

Markscheme

PlotIny againstp. RI1
[1 mark]
5i. [5 marks]

Markscheme

Regression lineislny = 0.986x + 0.602 M1A1
So g = gradient=0.986 R1

p=e%602 =183 MI1A1

[5 marks]

5j. [2 marks]

Markscheme

Area= [ 1.83e%9%6*dx = 140 units? M1A1

[2 marks]






