

Applications & Interpretation - 1 Page Formula Sheet

IB Mathematics SL & HL – First examinations 2021

Prior Learning SL & HL	
Area: Parallelogram	A=bh , b = base, h = height
Area: Triangle	$A = \frac{1}{2}(bh)$, $b = \text{base}$, $h = \text{height}$
Area: Trapezoid	$A=rac{1}{2}(a+b)h$, a,b = parallel sides, h = height
Area: Circle	$A=\pi r^2$, r = radius
Circumference: Circle	$C=2\pi r$, $r=$ radius
Volume: Cuboid	$V=lwh$, $\it l$ = length, $\it w$ = width, $\it h$ = height
Volume: Cylinder	$V=\pi r^2 h$, r = radius, h = height
Volume: Prism	$V=Ah$, $\it A={ m cross-section}$ area, $\it h={ m height}$
Area: Cylinder curve	$A=2\pi rh$, r = radius, h = height
Distance between two points (x_1, y_1) , (x_2, y_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
Coordinates of midpoint	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$, for endpoints $(x_1, y_1), (x_2, y_2)$
Prior Learning HL only	

Solutions of a
quadratic equation in
the form $ax^2 + bx + a$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \; , a \neq 0$$

Topic 1: Number and algebra - SL & HL

Topic 1. Italiibei	and digeord SE de ME
The nth term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
Sum of <i>n</i> terms of an arithmetic sequence	$s_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$
The nth term of a geometric sequence	$u_n = u_1 r^{n-1}$
Sum of <i>n</i> terms of a finite geometric seq.	$s_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, r \neq 1$
Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}$ $FV \text{ is future value, } PV \text{ is present value, } n \text{ is the number of years, } k \text{ is the number of compounding periods per year, } r\% \text{ is the number of nominal annual rate of interest}$
Exponents & logarithms	$a^x = b \leftrightarrow x = \log_a b$, $a, b > 0, a \neq 1$
Percentage error	$\varepsilon = \left \frac{v_A - v_E}{v_E} \right \times 100\%$

v_{A} = approximate value, v_{E} = exact value

Topic 1: Number and algebra - HL only	
Laws of logarithms	$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$ $\log_{\alpha} \frac{x}{y} = \log_{\alpha} x - \log_{\alpha} y$ $\log_{\alpha} x^{m} = m \log_{\alpha} x$ for $a, x, y > 0$
The sum of an infinite geometric sequence	$s_{\infty}=rac{u_1}{1-r}$, $ r <1$
Complex numbers	z = a + bi
Discriminant	$\Delta = b^2 - 4ac$
Modulus-argument (polar) & Exponential (Euler) form	$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\mathrm{cis}\theta$
Determinant of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \det A = A = ad - bc$
Inverse of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
Power formula for a matrix	$M^n = PD^nP^{-1}$, where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues

Topic 2: Functions - SL & HL

Equations of a straight line	y = mx + c; $ax + by + d = 0$; $y - y_1 = m(x - x_1)$
Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Axis of symmetry of a quadratic function	$f(x) = ax^2 + bx + c \rightarrow x = -\frac{b}{2a}$

Topic 2: Functions - HL only

Logistic function $f(x) = \frac{L}{1 + Ce^{-kx}}$, $L, k, C > 0$
---	-----------------

Topic 3: Geometry and trigonometry – SL & HL	
Distance between 2 points (x_1,y_1,z_1) , (x_2,y_2,z_2)	distance (d) = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$
Coordinates of the midpoint with endpoints (x_1, y_1, z_1) , (x_2, y_2, z_2)	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$
Volume: Right-pyramid	$V = \frac{1}{3}Ah$, $A = $ base area, $h = $ height
Volume: Right cone	$V=rac{1}{3}\pi r^2 h$, r = radius, h = height
Area: Cone curve	$A=\pi r l$, r = radius, l = slant height
Volume: Sphere	$V=rac{4}{3}\pi r^3$, $r=$ radius
Surface area: Sphere	$A=4\pi r^2$, r = radius
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Cosine rule	$c^2 = a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$
Area: Triangle	$A = \frac{1}{2}ab\sin C$
Length of an arc	$l = \frac{\theta}{360} \times 2\pi r$ θ = angle in degrees, r = radius
Area of a sector	$A = \frac{\theta}{360} \times \pi r^2$ $\theta = \text{angle in degrees}, r = \text{radius}$
Topic 3: Geometry and trigonometry – HL only	
	$l = r\theta$

Length of an arc	$l=r\theta$ $r=$ radius, $\theta=$ angle in radians
Area of a sector	$A=rac{1}{2}r^2 heta$ r = radius, $ heta$ = angle in radians
Identities	$\cos^2 \theta + \sin^2 \theta = 1$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$ \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} $ reflection in the line $y = (\tan \theta)x$
	$egin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$ horizontal stretch by scale factor of k
Transformation	$\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$ vertical stretch with scale factor of k
matrices	$\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$ centre $(0,0)$

$\begin{pmatrix} 0 & k \end{pmatrix}$ define $\begin{pmatrix} 0 & 0 \end{pmatrix}$
enlargement with scale factor of \boldsymbol{k}
$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, anticlockwise rotation
of angle θ about the origin $(\theta>0)$
$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, clockwise rotation

Vector equ. of a line	$r = a + \lambda b$
Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$
	of angle θ about the origin $(\theta>0)$

Parametric form of the equation of a line	$x = x_0 + \lambda l$, $y = y_0 + \lambda m$, $z = z_0 +$

	$\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$
Scalar product	$\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v} \boldsymbol{w} \cos\theta$
	where $ heta$ is the angle between $ extbf{\emph{v}}$ and $ extbf{\emph{w}}$

Angle between two vectors	$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ v w }$
	$v_2 w_3 - v_3 w_2$

	$ \mathbf{v} \times \mathbf{w} = \mathbf{v} \mathbf{w} \sin \theta$ where θ is the angle between \mathbf{v} and \mathbf{w}	Vector product	$\boldsymbol{v} \times \boldsymbol{w} = \begin{pmatrix} v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$
--	---	----------------	---

Area of a	$A = oldsymbol{v} imes oldsymbol{w} $, where $oldsymbol{v}$ and $oldsymbol{w}$ form two
parallelogram	adjacent sides of a parallelogram

www.revisionvillage.com

- ♣ IB Maths Exam Questionbanks
- ♠ IB Maths Learning Videos
- ► IB Maths Past Paper Video Solutions

Voted #1 IB Maths Resource Online & Used by 250,000+ IB Students & Teachers Worldwide

Topic 4: Statistics and probability - SL & HL	
Interquartile range	$IQR = Q_3 - Q_1$
Mean, \overline{x} , of a set of data	$ar{x} = rac{\sum_{i=1}^k f_i x_i}{n}$, where $n = \sum_{i=1}^k f_i$
Probability of an event $\it A$	$P(A) = \frac{n(A)}{n(u)}$
Complementary events	P(A) + P(A') = 1
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
Independent events	$P(A \cap B) = P(A)P(B)$
Expected value of a discrete random variable X	$E(X) = \sum x P(X = x)$
Binomial distribution	$X \sim B(n, p)$
Mean ; Variance	E(X) = np ; $Var(X) = np(1-p)$
Topic 4: Statistics an	d probability – HL only
Linear transformation of a single random variable	$E(aX + b) = aE(X) + b$ $Var(aX + b) = a^{2}Var(X)$
Linear combinations of <i>n</i> independent random	$E(a_1X_1 \pm a_2X_2 \pm \dots \pm a_nX_n) = a_1E(X_1) \pm a_2E(X_2) \pm \dots \pm a_nE(X_n)$
variables, X_1, X_2, \dots, X_n	$Var(a_1X_1 \pm a_2X_2 \pm \pm a_nX_n) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + + a_n^2 Var(X_n)$
Unbiased estimate of population variance	$s_{n-1}^2 = \frac{n}{n-1} s_n^2$ Sample statistics
Poisson distribution Mean ; Variance	$X \sim Po(m)$ E(X) = m; $Var(X) = m$
	Z(II) III) VIII (II) III
Transition matrices	$oldsymbol{T}^n oldsymbol{s}_0 = oldsymbol{s}_n$, where $oldsymbol{s}_0$ is the initial state

Topic 5: Calculus - SL & HL	
Derivative of x^n	$f(x) = x^n \to f'(x) = nx^{n-1}$
Integral of x^n	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
Area enclosed by a curve and the x-axis	$A = \int_{a}^{b} y dx , \qquad \text{where } f(x) > 0$
The trapezoidal rule where $h = \frac{b-a}{n}$	$\int_{a}^{b} y dx \approx \frac{1}{2} h((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}))$

Topic 5: Calculus – HL only	
Derivative of $\sin x$	$f(x) = \sin x \rightarrow f'(x) = \cos x$
Derivative of $\cos x$	$f(x) = \cos x \ \to \ f'(x) = -\sin x$
Derivative of tan x	$f(x) = \tan x \rightarrow f'(x) = \frac{1}{\cos^2 x}$
Derivative of e^x	$f(x) = e^x \to f'(x) = e^x$
Derivative of $\ln x$	$f(x) = \ln x \rightarrow f'(x) = \frac{1}{x}$
Chain rule	$y = g(u), u = f(x) \rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
Product rule	$y = uv \rightarrow \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$
Quotient rule	$y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
Standard integrals	$\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$
Area enclosed by a curve and x or y-axes	$A = \int_{a}^{b} y dx \text{or} A = \int_{a}^{b} x dy$
Volume of revolution about x or y -axes	$V = \int_a^b \pi y^2 dx \text{or} V = \int_a^b \pi x^2 dy$
Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2s}{\mathrm{d}t^2} = v\frac{\mathrm{d}v}{\mathrm{d}s}$
Distance; Displacement travelled from t_1 to t_2	dist = $\int_{t_1}^{t_2} v(t) dt$; disp = $\int_{t_1}^{t_2} v(t) dt$

Euler's method

Euler's method for

coupled systems

Exact solution for

coupled linear differential equations $y_{n+1} = y_n + h \times f(x_n, y_n); \ x_{n+1} = x_n + h$

where h is a constant (step length) $x_{n+1} = x_n + h \times f_1(x_n, y_n, t_n)$

 $y_{n+1} = y_n + h \times f_2(x_n, y_n, t_n)$

 $\pmb{x} = Ae^{\lambda_1 t} \pmb{p}_1 + Be^{\lambda_2 t} \pmb{p}_2$

 $t_{n+1} = t_n + h$ where h is a constant (step length)