Exploring Cricket Ball Trajectories

1. Introduction

I picked up a cricket bat when I was 8 years old, and ever since then, cricket has been a
passion of mine. The maximum scoring shot in cricket is called a ‘six’, which involves hitting
the ball with enough force so that it falls outside the boundary line without bouncing on the
ground at any instant before it. Whenever I watch a cricket match, I am fascinated by how
professional batsmen know exactly how to hit the ball in order to land it past the boundary.
However, not all attempts to hit a six turn out to be successful, because the ball often falls
behind the boundary line, or ends up in the hands of a fielder (player from the opposite team
on the field). This made me wonder, “What would be the perfect way to hit a six?”. Thus, I
was inspired to conduct this mathematical exploration centred around the mathematical
modelling of the trajectory of a cricket ball by considering the factors that affect the

aerodynamics of the ball when it is hit by the batsman with the objective of scoring a six.

Batsman

Boundary line

—
—

Figure 1: A diagram representing a cricket field

2. Factors affecting the motion of a cricket ball

After a batsman hits the ball, the ball comes to a rest, then reverses its direction, and is set into
a parabolic motion. Apart from the velocity at which the batsman swings his bat and the angle
at which it hits the ball, several other factors impact the trajectory of the ball. The

gravitational force acts downward on the ball during the course of its motion, and air
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resistance also plays an important role in slowing down the ball as it exerts a drag force on the
ball'. Apart from these factors, some other forces like lift force and side force also act on the
ball due to something termed as the Magnus effect. However, their effect on the trajectory is
much more complex in nature. These forces are more prominent when the ball is being
pitched to the batsman compared to when the ball is hit by the batsman. Therefore, they have

been neglected in this investigation.

3. Objective of the Investigation

In this investigation, I will firstly model the trajectory of a cricket ball in a projectile moving
towards the boundary, assuming that the ball’s motion occurs in vacuum and thus this model
will only account for the force with which the ball is hit and the gravitational force that acts
on it during its motion. This will be used to explore several features of the trajectory, like its
maximum height. Then, I will model the effect of drag force (air resistance) on the trajectory
of the ball to obtain a more realistic theoretical trajectory of the cricket ball. Using the final
model of the trajectory, I will determine the optimum conditions required for the batsman to
hit a six. Since the cricket boundary line is not exactly circular in shape, I will take the
average distance from the batsman’s position to the boundary which, according to the
International Cricket Council®, should be 81.50 m. The aim of this investigation is to
understand the motion of a cricket ball as it is hit by the batsman with the

intention of scoring a six and determine the conditions that will lead to a successful shot.

4. Vacuum Model

For the initial model, let’s assume that after the ball leaves the bat, it travels in vacuum. The
drag force (air resistance) is assumed to be negligible in order to obtain a simplistic model.
Therefore, the only forces acting on the ball are:

e The initial force provided by the bat

e The gravitation force (Fy)
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Although the acceleration due to the gravitational force* is not constant at all instants during
the motion of the ball (varies between 9.764 ms and 9.834 ms™2), here, I have assumed it to
be constant at 9.8 ms. According to the official ICC rules’, the bowler has to ensure that the
ball reaches the batsman below his waist (0.9- 1.0 m), thus, the central height between the
waist and the ground (0.5 m) was taken as the initial height of the ball. In addition to that, I
conducted an experiment where a professional bowler was asked to bowl the ball 50 times,

and it was observed that the average height at which the ball landed near the batsman was

047m = 0.5m.
A
y
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Figure 2: lllustration of the trajectory of the cricket ball in vacuum X (m)

The predicted theoretical trajectory was plotted on a cartesian plane, using which I will derive
the equations for horizontal and vertical motion of the ball during its flight in vacuum.

The following symbols need to be defined before I derive the equations of motion:

D —

h = distance between ground and the |vg | = v = initial velocity or the

ball when it hits the bat (m) magnitude of the vector 7 (ms™)

g = gravitational acceleration (9.8 ms) v, = horizontal component of Ty (ms™)

a, = horizontal acceleration (ms?)

v, = vertical component of v, (ms™)

= 1 ] '2
a, = vertical acceleration (ms™) t  =time (s)

vy, = vector of the initial velocity (ms™) 0 = angle between horizontal and

direction of initial velocity (rad) (0 < 6 <§ )
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4.1 Horizontal Motion

Since it is assumed that no external forces are acting on the ball in the horizontal
direction, the horizontal acceleration, a, = 0 (uniform motion).

Therefore, horizontal velocity, v, is constant throughout the motion, v, = v, cos 0
Horizontal displacement, x, at time t can be calculated by integrating the equation for

horizontal velocity as the integral of velocity gives us acceleration. Thus,

x(t) = fvo cos 0 dt = (v, cos0)t [1]

4.2 Vertical Motion

In the vertical direction, the force of gravity acts downward on the ball. Therefore,

vertical acceleration, a,, = — g.
According to the equations for free falling bodies®, initial vertical velocity = v, sin 8

and vertical velocity at time t: v, = vy sin8® — gt

Vertical displacement can be calculated just like horizontal displacement i.e., by

integrating the vertical velocity equation.

1
y(t) = fvosine — gt dt = (vosine)t—igt2 +c
If T substitute t = 0, we know that y(t) =h =c;

1
= y(t) = (vysin0)t — Egt2 +h [2]

4.3 Parabolic Equation

The equations [1] and [2] can be manipulated to obtain a parabolic equation in terms of x and

y in the form of y = ax? + bx + ¢

From equation [1], a formula for t can be derived;

X

v, cos 0

6 The University of Tennessee. (2013). Freely Falling Objects. Introduction to Physics I
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Substituting this into equation [2],

_ XVpsin® 1 ( X )2+h
y= Vo €c0s 0 Zg Vo €c0s 0
. gsec’d
Ly =— 202 “x“+ tanO -x+h [3]
_ 2
(y = ax? + bx + c; wherea = gZS:CZ 9,b=tan9,c=h;a<0which indicates that the
0

parabola faces downwards as we can see in the Figure 2).

4.4 Equation for angle 0 required to reach maximum horizontal distance

When the ball finally lands on the ground, covering its maximum horizontal distance, the
coordinates on the Cartesian Plane would be (x,0), since the height from ground would be 0.
Substituting y with 0 in equation [3];

—gsec? 0
) 2

2

0=x + x-tan@ +h

2v,

Using the trigonometric identity sec? 6 = tan’ 6 + 1;

—ax? x2 1
0= gz tan® 6 + x-tan9+h—g >

2v, 2v,
Let tan 68 = b;

_ xZ x2
0="2 b2 + bx+(n-L5)

vy 2v,

Using the quadratic formula;

s o)
xijx 4( 20,42 h 20,2
b= >

_9x
2( 27702)
2 2 _o( 9 \(_ gx?
v? + v, j<1 2<v02)< h+—2v02)>
> b=
gx
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Vo’ + \/vo‘* — g(—2vy%h + gx?)
gx

=> b=

Substituting b =tan 6 :

Vo2 + \/vo‘* — g(—2vy%h + gx?)
gx

.0 = tan! (voz + \vo* +gCv*h = i) )
gx

tanf =

[4]

In order to make sure that the ball reaches the boundary line of the ground, the maximum
horizontal displacement (x) required is 81.5 m (length of the boundary). By substituting the
values of ‘x” as 81.5m, ‘h’ as 0.5 m and ‘g’ as 9.8 ms~ in the equation [4], we can plot the
graph of 6 vs v, to gain a better understanding of the angle between the ball and the

horizontal and the corresponding velocity that must be provided to it in order to hit a six.

8 (rad)
09

(28,0.78)
! R <v02 + /vo* +9.8(vo? — 65094.05) )
=tan

08

07

798.7
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0.5
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03

02

0.1

H
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Graph 1: Relationship between the angle to the horizontal and the initial velocity of the ball
From graph 1, we can see that the minimum initial velocity needed to hit a six is
approximately 28 ms™! and the corresponding angle required is 0.78 radians or approximately
45°. It must be noted however that these conditions are only applicable when the ball is
travelling in vacuum which is not the case in the real world. The angle required between the
horizontal and the ball reduces exponentially as the initial velocity provided to the ball

increases. This makes sense to me as a batsman as intuitively I try to hit the ball at a lower
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angle but with greater force in order to send it beyond the boundary. If the angle is too high,
the ball’s vertical motion will be greater than its horizontal motion and therefore, it will never

reach the horizontal distance of the boundary.

4.5 Maximum height of the cricket ball

In order to find the maximum height reached by the cricket ball, I will determine the maxima
point of the graph of the trajectory of the ball in the cartesian plane. From equation [3],

—gsec? 0
) 2

2

y=x + xtan6 +h
2v,

At the maxima, the gradient is 0, thus the first derivative is 0

d —xgsec? 0
dy_ o cagsec
dx Vo \
y
Vo2 tan @
SXx=——
x gsec?6

Maximum

Using basic trigonometric identities; height

2

sin @ cos? 0

gcos@ X

2 sin@ cos®

g

Vo
>x =

From trigonometric identities, we know; sin 260 = 2sin @ cos 8
Vo2 sin 260

29
Substituting x in equation [3];

2 4

vo? sinfcosftanf  gvy* sin? 6 cos? O sec? 6
= = —
Y g 29%v,°
Vo? sin?@  v,? sin? 0 Vo2 sin? 6
Sy = - th=2""
g 29 29
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. . . vo? sin? 6 ..
Thus, the maximum height that the ball reaches is y = (T + h). Thisis ata

Vo2 sin 26

29 ) from the point where it starts its motion from.

horizontal distance of X = (

I have successfully calculated equations for several features of the trajectory of the cricket
ball when it is hit with the objective of scoring a six. Using similar equations, the height of a
‘six” shot and the distance covered by it are calculated by the professional analysts who
analyse the trajectory of the ball in a real cricket match using technology.

The equations derived for the features of the ball are highly complex and the mathematics
behind the shot is not considered while hitting the ball but understanding the mathematics
does provide great insight into the concept of trajectories. However, these trajectories aren’t
an accurate representation of the cricket ball as there are some other factors at play that affect

the motion of the ball.

5. Air Resistance

We often underestimate the impact of air resistance on the motion of bodies travelling
through air, while in fact air is heavier than you may expect. One cubic meter of air is
approximately 8 times heavier than a cricket ball'. When the cricket ball is travelling through
air, air resistance opposes its motion, causing the ball to move slower than expected, resulting
in a lower maximum height and overall displacement. This opposing force is termed as the
drag force and is often roughly equal to the weight of the ball or sometimes about 1.7 times
the weight!! This force depends on several factors, including the density of air, the speed of
the ball, and the cross-sectional area of the ball. Drag coefficient (Cq) is a dimensionless
quantity that is used in the drag equation. A high drag coefficient indicates a higher drag
force and vice versa.

While playing cricket, I never considered the impact of air resistance or drag force on the

flight of the ball or its trajectory. Since cricket balls are pretty heavy, I always thought that air
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plays no role in the motion of the ball. However, according to experimental data, air

resistance can reduce ball speed significantly.

The drag force is given by the following equation®:

1
Fd = E Cdpva

In this equation, the following symbols must be defined:
F 4 = drag force (N)

C, = drag coefficient.

The value of this coefficient is not constant as it depends on the type of air flow
(turbulent/laminar), direction of flow, the ball’s speed and even the roughness of the cricket
ball. This property of the ball is used by bowlers to provide swing to the ball because the ball
that is rough on one side, but smooth on the other has a different drag coefficient and
experiences different air flow. While this concept is too complex to grasp at the level of this
investigation, the drag coefficient for standard cricket ball has been experimentally
calculated’ to be between 0.5 and 0.45, depending on the condition of the ball (assuming that
the ball speed is greater than 28 ms!).

v = velocity of the ball (ms™)

The velocity in the vertical direction (vy) and in the horizontal direction (v,) will be
considered separately since the force acts in all directions.

A = area of cross section of the cricket ball (m?)

The diameter of a standard cricket ball® is 0.072 m. Therefore, radius () = 0.036 m. Cross
sectional area can be calculated by 772, .« A = 0.00407 m?.

p = density of air (kgm™)

According to the International Standard Atmosphere!?, the density of air is approximately

1.275 kg/m?.

"Alam, F.; Brooy, R.; Watkins, S. & Subic A. (2007) An experimental study of cricket ball aerodynamics
$Werner, A. (2007). Flight Model of a Golf Ball
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5.1 Horizontal Motion

Previously, the acceleration in the horizontal direction was assumed to be 0, however, now

we know that drag force acts backwards on the ball and provides negative acceleration.

1

Fd == _E Cdpvsz
pA

A = =5 C 0,2

where ‘m’ is the mass of the ball which is 0.156 kg for a standard cricket ball’.

a, = _(k Cdvxz) [5]
pA

k = — is taken as a constant
2m

We know that the initial horizontal velocity at time t= 0, is v, cos 8. However, the horizontal
acceleration is a function of the horizontal velocity and I can’t simply use Newton’s
equations of motion to calculate the horizontal velocity at time ‘t’. Since acceleration is the
derivative of velocity with respect to time, equation [5] can be rewritten as;

dv
d_tx == _k Cdvxz
Bringing both v, variables to one side;

dv
— = —k Cydt
1%

2
X

We know that at t=0, v, = v, cos 0. Thus, we can find the definite integral on both sides of

the equation;

Uy 1 t
f dex = f —k Cddt
v x 0

0 COS O
Vy 1 t
=>f —zdvx:—defldt
vy Ccos O Ux 0
17"
= [— —] = [k C4tl}
X~vycos 0
1 1
=>—-—+ —k C4t

v, VycosB
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1

o Uy =

Tk Cyt 4 —

vy cos O
I can find the horizontal displacement by integrating the equation for horizontal velocity

derived above with respect to time;

1

x= f — dt 6]
det+v0 cos®

I can integrate this equation using the u-substitution method,

L du= kCydt,dt =2

vgcosB ’ kCq

1

vy cos 0

Substituting the values of dt and (k Cqt + ) into the equation [6],

= 1d—ll +
X = uu_denuC

1

Vg COS

Undoing substitution u = k C,t + into the above equation;

1 1
= —n (kCat )
x den d +v0cose T

We know that at time t=0, the horizontal displacement, x= 0. Thus,

0= 1 ( : )+
_den v, cos 0 ¢

Al
€= den v, cos 0

Substituting ¢ into the equation for the horizontal motion;

= i (n (a4 5 oig) = o oig)
X = kC, " "7 p,cosH " v, cos 6

Using the law of logs;

X = % (In(Kt vgcos6+ 1)) [7]

Here K = kC, is taken as a constant for simplicity. This equation for the horizontal
displacement provides an approximate depiction of the effect of air resistance on the

horizontal motion of the ball. In reality, the drag force in the horizontal direction is directly
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proportional to the instantaneous velocity, not the horizontal velocity which was assumed in
this derivation. However, using the instantaneous velocity in the equation makes it

impossible to algebraically solve the equation and thus, this alternative approach was used.

5.2 Vertical Motion

Acceleration in the vertical direction, ay was initially assumed to be -g, but now we know that
drag force also acts on the ball in the vertical direction and provides negative acceleration;

ay, = =k (Cav,>) — g

Acceleration can be written as the derivative of velocity with respect to time;

dv

K = k C, is taken as a constant for simplicity. Rewriting the equation;

dv,
————= —1dt
Kv,“+g

We know that, at t= 0 ; vy = vo sinf. Taking the definite integral on both sides of the equation;

Vy 1 t
———dv =f—1dt
-fvosinHKvyz-}'g Y 0

1 Vy 1 t
> —zdvyzf—l dt
Vg sin 6 2 0

vy +< )

Using the standard integral [

SIS

garctan —=| + C;

Vy
tan~?! (Uy ﬁ)

d
Vo sin 6
tan~! (1@\/%) tan~? (vo sin 0 \/§>
= —
VvKg

JKg

= = [-tl§

=< @\
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K K
= tan~! vy\/; = tan~! vosinB\/; — t\Kg

Applying tan to the both sides of the equation;

K
:vy\/; = tan| tan?! vosmef - t/Kg

Using the compound angle trigonometric identity for tan;
. K
g Vo smH\/% —tan( tw/Kg)
v =2
K
1+ vysinf \/%tan( tw/Kg)

Thus, I have successfully determined the equation for vertical velocity. In order to find the

equation for vertical displacement, y, I will integrate this equation with respect to time.

ff Uy smH\/: —tan( t\/K_g)

1+ vosme\/*tan(tw/ )

dt

In this equation, let (vo sin @ \/g) =a and ,/Kg = b ,where aand b are constants.

Rewriting the equation;

_\/?f tan(bt) — a it

atan(bt) + 1

Solving the integral using u-substitution;

du
u=bt,du=bdt,dt=?

B f tan(u) —a 4 3
Y= bVvK J atan(u) +1 u 5]
Solving the int 1ftan(u)_ad-

olving the integra atan(w) + 1 u;
1 (atan(u) + 1) —a— 1
= f a + a du
atan(u) + 1 atan(u) + 1
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- ( 1)f S +1f1d
B 74 atan(u) + 1 YT “

Using the identity tan?0 +1 = sec?6;

- <—a B %) f tarslzitzzgu-l)- 1 (a tan(lu) + 1) du +%f 1du

Substituting v = tan (u), dv = sec?(u) du, du =

v
sec?(u) >

= <_a_%)f(v2+1)1(av+1) dv +%f1du

Performing partial fraction decomposition;
_( 1)f a? av —1 p +1f1d
- @ D@+ T @+ ner+n) @ T T

e [ I [ PR Y
- a a/\a?+1 av + 1 v a+1 v2+1 v a u

. . d
Substituting z=av+1 ,dz=adv,dv = 72 :

_( 1)<aln(z) 1 f(av—l)d)+1f1d
B T\ r1 T 2+1) v 1) )T g v

Undoing the substitution z = av +1, and expanding (3’2’:)’

_( 1)<aln(av+1) 1 f( av 1 )d)+1f1d
B @ a az+1 a2+1) \wv2+1 v2+1 v a u

Substituting p =v*+ 1,dp=2vdv, dv = Z—Z , and using the standard integral [ ( : ) dv =

v2+1

arctan v;

_ ( 1)<aln(av+1) a 1 dp 4+ arctan(v))_l_lfld
B R a?+1 a?+1 pr a’?+1 a u

1\ saln(av + 1) alnp arctan(v) 1
= <—a——)< - )+—f1du
a a?+1 2(a?2+1) a?z+1 a

Undoing the substitution p = v?+ 1 and integrating the constant 1;

a

( 1) (a In(av+1) aln w?+1) arctan(v)) LB

By AP 2(a® + 1) @ + 1

Undoing the substitution v = tan (z) and u = bt;

Page 14 of 20



B (_ a’ + 1) (a In(atan(bt) +1) aln (tan? (bt) + 1) arctan(tan(bt))) N bt

a a?+1 2(a®2+1) a?+1 a

Simplifying the equation;

_In (tan® (bt) +1)
B 2

— In(a tan(bt) + 1)

Substituting this into equation [8];

Jg <ln(a tan(bt) + 1) — m(tan® {bt) + 1))

Y= WK

Using trigonometric identities and law of logs;

+C

In (tan® bt +1) In(sec® bt)  In(sec(bt)) + In(sec(bt))
2 - 2 - 2 B n(cos(bt)

) = In1 — In(cos (bt))

We can expand the domain by taking the absolute value of logarithms.

Jg (n(la tan(bt) + 1|) + In(Jcos(bt)|)) N
y =

C
VK

Substituting the values for a and b into the equation (vo sin 8 \/g =a and Kg = b) ;

n

v, sin 0 \/?\/;n(\/’(_gt) + 1‘ + In(|cos(yKgt)])

y = K

+C

We know that at t =0, y = 0.5 (initial height of the ball is assumed to be 0.5 m) . € = 0.5

n

v, sin § VK tan(\/Kgt) + 1‘ + In(|cos(/Kgt)|)
J9 + 0.5

y = e : [9]

5.3 Corrected Parabolic Equation

Now I will correct the parabolic equation by manipulating the new derived formulas for ‘x’
and ‘y’ to come up with a new equation for the trajectory of the ball that takes air resistance
into account.

From equation [7], an equation for time ‘t’ with respect to ‘x’ can be determined.
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1
X =4 (In(Kt vycos6+ 1))

Kx = In(Ktvycos0 + 1)
ekKx — eln(Kt vgcos 0+1) — Kt Vo cosO +1

ef* —1

~ Kv, cos 9
In equation [9], this value of t can be substituted. The absolute values are removed since all

constants and variables are positive.

In (170 sin 6 \/g tan ( M) + 1> +In (cos ( M))

Kv, cosB Kvy cosB

y = X + 0.5 [10]
Equation [10] is not in the form of a standard parabola equation. Therefore, a cricket ball’s
trajectory in reality is not parabolic. This is easily observed in the cricket field as the ball
never follows an actual parabolic path. This corrected equation can be used to plot the
trajectory of the ball on a cartesian plane. The value of constant K is taken as 0.008 after
assuming the value of drag coefficient (Cq) to be 0.48 (as it varies® between 0.45 and 0.5).
The following graph shows the trajectory of ball hit with initial velocity 28 ms™! and at an

angle of 45° from the horizontal (according to graph 1, 28 ms™! is the minimum initial

velocity required to hit a six in vacuum).
y(m)

20

vacuum trajectory

drag trajectory

x(m)

Graph 2: The graph of the theoretical predictions of the trajectory of ball when it is hit at angle of 45° and with an initial
speed of 28 msL. The trajectory for the ball in vacuum and the ball experiencing air resistance/drag force are plotted.
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Graph 2 clearly shows the impact of air resistance on the theoretical trajectory of the ball.

The maximum height achieved by the ball is lower compared to the vacuum trajectory, and

much to my surprise, the maximum horizontal distance is significantly lesser (by about 25

m). It is evident from the graph that while the initial speed of 28 m/s and an angle of 45°

would not be enough to hit a six in a real life scenario.

5.4 Velocity required to reach point (81.5.v) on the cartesian plane

In order to find the minimum initial velocity required to hit a six, we need to substitute x =

81.5 in equation [10] and let us take the same initial angle, i.e. 45°. After substituting these

values into equation [10], we can plot the graph of'y vs v,.

40

30

20

y (m)

34

36 38 40 42 44 46 48 50 52 54

56

58 60 62

Graph 3: The graph of initial velocity vs vertical distance at the point (81.5,y) on the cartesian plane.

V2 45.5 455
ln<ﬁv0tan( e )+1 +1In{ cos (v_)
y= 0.008 +0.5
vy (ms1)

It must be noted the graph is only plotted for the values of v, greater than 28 ms™! because for

initial velocities less than that, the assumed value for the drag coefficient would be invalid.

Graph 3 shows that the minimum initial velocity required to reach (81.5, 0) is 36 ms™!. Any

velocity more than that will ensure that the ball crosses the boundary line. This value is much

reater than 28 ms™! which was the initial velocity required to hit a six in vacuum. Therefore,
g y req

air resistance makes it much harder for the batsman to hit a six. However, these values

assume that the initial angle at which the ball is hit is 45°. For any angle lower than that, the

initial velocity required would be greater, thus these values were considered to be

appropriate.
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6. Swinging the bat to hit a six

I decided to research about the perfect way of hitting a ball so that I could apply my findings
of initial vertical velocity to find out the perfect way to hit a six. Much to my surprise, hitting
a ball with a bat has very complex mathematics and physics behind it. The average bowling
speed!? for a fast bowler is about 38.89 m/s while the horizontal distance between the ball
and the batsman, at the moment of release, is approximately 18. Thus, the batsman only has
about 0.46 seconds to react to the ball and try to hit a six. If the ball perpendicularly strikes
the centre of percussion of the bat while the batsman plays his shot, the least amount of
power is required and calculations can easily be performed. Batsmen tend to figure out where
this point approximately lies on their bat, so, for the purposes of this investigation, let us

assume that the ball hits the bat, making a right angle with the centre of percussion.

The following equation has been derived for the velocity at which
the ball is released from the bat after being hit!*:

v = [-muh® + Mk*w(1 + e)h + Muk?e][mh? + Mk?]~1

Here, v represents the initial speed given to the ball, which, according to my trajectory model,
should be 36 ms™! in order to hit a six. M and m are the masses of the bat and the ball
respectively!* which can be taken as 1.17 kg and 0.156 kg. The incident ball speed, u, can be
taken as 38.9 m/s as previously discussed. e is the coefficient of restitution, & is the radius of
gyration about the axis of rotation and 4 is the distance of the centre of percussion from the
axis of rotation. The experimentally calculated values for these can be used, which are!4; e =
0.53,k=0.42m, h=0.49 m. We need to calculate w , which is the angular velocity that the
bat must be swung with. Substituting these values into the equation;

_ v(mh? + Mk?) + muh? — Muk?e _ 38 65 rad
“= MI?(1 + e)h = 38.65rad/s

The linear velocity can be calculated as kw = 16.23 m/s

“Brearley, M. N.; Burns, J. C & Demestre, N. I., (1990), Int. J. Math. Educ. Sci. Technol
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7. Conclusion

After having investigated the trajectory of the cricket ball during its flight from the batsman’s
bat to the cricket ground, and then using the model to find out the velocity at which the bat
must be swung in order to accomplish the task of hitting a six, I have come to the conclusion
that hitting a six is no easy task. The batsman has 0.46 seconds to observe the kind of bowl
being bowled, choose his type of shot, then accelerate the bat to up to 16 m/s (acceleration of
3.5 times the gravitational acceleration!) and then also make sure that the cricket ball strikes
the ‘sweet spot’ of the bat. However, there were many complex characteristics of the
trajectory of the ball that were simplified for this investigation.

While the model employing the quadratic drag force obtained is much more realistic than a
zero-drag theory that is generally studied in high school (even in my IB Physics class), other
forces like side force and spin force were completely neglected in the final theoretical model
which can lead to inaccuracies if the technique is applied to a practical situation. Moreover,
the drag coefficient was assumed to be constant throughout the motion. This is not true in
reality as the coefficient varies with the speed of airflow, but this variation is negligible
enough to be neglected for our purposes. Moreover, as pointed out earlier, the gravitational
acceleration is not constant and may change with the direction of force acting over a long
distance and while the cricket ground isn’t too big (81.5 m radius was assumed), that distance
is still significant enough to cause minor variations in the gravitational acceleration.

Further applications of this work can be to firstly, model the effect of forces like side force
and spin force on the trajectory of the cricket ball and then, also experimentally analyse the
trajectory using video analysis software in order to compare the theoretical model with
experimental data. This wasn’t possible for me to do due to lack of appropriate resources, but
my final theoretical predictions were based on experimental data from (Brearley, Burns &

Demestre)!'* which shows that the theoretical data can be applied to real situations.
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8. Critical Reflection

Despite all its limitations and weaknesses, this investigation helped me a lot as a batsman to
understand the process of hitting a shot and trying to score a six. I could finally understand
what factors I could control in order to make sure I hit the perfect shot and what mistakes I
could avoid making. Overall, it made me more aware of the underlying technical aspects of a
ball’s flight. Therefore, other cricket players and enthusiasts can gain a lot of crucial
information from this investigation which would help them improve their style of playing. It
would especially help beginner players as they don’t intuitively know what speed and angle
should be provided to the ball in order to hit that perfect six and not end up getting caught.
Apart from cricket, the theoretical model for the trajectory can also be applied to other ball
sports like tennis, baseball and golf too, but they will all have different values for coefficients
like ‘K’ and ‘Cq’ (drag coefficient) due to every ball being off different dimensions. A golf
ball’s trajectory is particularly intriguing since the ball has holes all over its body which
increases the effect of drag and spin force which can be further explored by expanding the
work done in this investigation. Thus, not only is this investigation extremely useful to
cricket players and enthusiasts, but also to players of other ball sports. Moreover, other
projectiles can be investigated in a similar way, like trajectories of a bullet, a rocket or
unguided bombs and the theoretical model derived here can be applied to those conditions

which could help researchers gain more insight into those projectiles.
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