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Introduction 

Shapes and topology define the world we live in. From infrastructure to fashion, and everything in 

between, the most basic of shapes create complex, compound structures. I have always had a 

particular interest towards shapes in mathematics and I wished to apply them to my personal areas 

of interest such as fashion and engineering. 

I specifically wanted to look at rings due to their intricate design. The 

radius would allow me to find the volume for rings of different sizes 

which can further help in determining the price when mass 

manufacturing a variety of rings (Fig. 1).1  

Other applications of this concept can be used for calculating the area of complicated designs in the 

creation of curved tools in mechanical engineering (Fig. 2).2I wanted to explore the core concept in 

designing these rings and tools mathematically in the form of an 

extended essay, where I can further research about their 

applications. 

This led me to create the research question, which is – 

“What is the volume of a regular 𝒏-sided (𝒏 ≥ 𝟑, 𝒏 ∈  𝒁+) polygon rotated 360° around the 𝒙-

axis to form a ring with variable radius, 𝒉 (𝒉 ∈  𝑹+)?” 

 

 

 

 
1Sonic Ring Png - Sonic The Hedgehog Rings Vector, Transparent Png, Transparent Png Image - PNGitem. 

(n.d.). PNGitem.Com. https://www.pngitem.com/middle/iiwRhwR_sonic-ring-png-sonic-the-hedgehog-rings-

vector/ 
2Allen Key PNG File | PNG Mart. (n.d.). PNG Mart. http://www.pngmart.com/image/209489 

 

Fig. 2 – An Allen key2 

Fig. 1 – An image of a ring1 
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Exploring the question 

To better understand the question I will be researching, the polygons have to be graphed onto a 

cartesian coordinate system for visual representation. The polygons will be inscribed within a circle. 

As seen in Fig. 3, the radius of the circle which the polygons will be inscribed in will be denoted by 𝑟. 

This allows us to set the thickness of the ring which will be formed. The height of the centre of the 

polygon from the 𝑥-axis will be given by 𝑎. Finally, the height of the base of each polygon from the 

𝑥-axis will differ according to the values set for 𝑎 and 𝑟, which will give us the radius of the ring. 

 

For example, a triangle with 𝑎 = 2 and 𝑟 = 1 will look like Fig. 4. 

 
Fig. 4 – Regular triangle with 𝑟 = 1 and 𝑎 = 2 

Fig. 3 – Triangle showing variables 𝑎, ℎ, and 𝑟 
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Increasing the height will make the radius of the ring larger, while increasing the radius of the circle 

which the polygon is inscribed in will decrease the radius of the final ring. The following figure (Fig. 

5) illustrates a triangle with 𝑎 = 6 and 𝑟 = 5. 

 

 

 

 

 

 

As we can see, the radius of the circle is now 5 and the height of the centre of the polygon from the 

𝑥-axis is 6. However, adjusting the variables can pose a problem as the modified height and radius 

can sometimes cause the polygon to cut through the 𝑥-axis, 

which will then not result in the formation of a ring, as we can 

see on the right (Fig. 6), where 𝑟 = 5 but 𝑎 = 1. We must 

consider the circle, since as 𝑛 approaches infinity, the polygon 

turns into a circle. Thus, 𝑎, 𝑟 ∈ R and 𝑟 < 𝑎 for the formation of 

a ring. If 𝑟 = 𝑎, then when 𝑛 reaches infinity, the circle formed 

will be touching the 𝑥-axis and the rotation will form a solid 

instead of a ring. 

By finding a general equation of the lines of the graphed 𝑛-sided polygons and then using the 

formula for finding the volume of revolution, I will be able to create a general formula for the 

volume of revolution for any 𝑛-sided polygon. 

  

Fig. 5 – Regular triangle with 𝑟 = 5 and 𝑎 = 6 

Fig. 6 – Regular triangle 

with 𝑟 = 5 and 𝑎 = 1 
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Finding the relationship between 𝒂, the height of the centre of the polygon, and 𝒉, the 

height of the polygon from the 𝒙-axis 

 The variable ℎ, the height of the base of the polygon from the 𝑥-axis, will give us the radius of the 

ring formed. Thus, it is important to derive it for specifying the dimensions of the ring. We can 

specify the height of the centre of the polygon from the 𝑥-axis, 𝑎, as seen in the previous section. In 

this section, I will create a relationship between 𝑎 and ℎ. To better understand this, we can look at 

the following diagram (Fig. 7). 

 

 

Here, a triangle is inscribed within a circle, where 𝑎 = 1 and 𝑟 = 1, but ℎ is unknown. We can find 

the value of ℎ by subtracting 𝑎 with 𝑖, i.e., ℎ = 𝑎 − 𝑖. To do this, we must consider the following 

isosceles triangle (Fig. 8). 

Fig. 7 – Regular triangle with 𝑟 = 1 and 𝑎 = 2. The variable 𝑖 is used to show 

the distance from the centre to the base of the polygon and the variable ℎ is 

used to show the distance from the base of the polygon to the 𝑥-axis 

Fig. 8 – Isosceles triangles formed within the 

triangle in consideration, 𝑛 = 3, with angle 𝜃 
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Since both of the lines drawn on the triangle in the first part of Fig. 8 are radius of the circle, we can 

see that an isosceles triangle is formed. Moreover, three identical isosceles triangles are formed in 

the triangle. Hence, we can find the angle 𝜃 formed between the dotted lines. For example, for the 

triangle in the figure, it would be: 

360

3
= 120° 

We can see this in other 𝑛-sided polygons as well (Fig. 9) – 

 

 

The number of isosceles triangles formed is equal to the number of sides of the 𝑛-sided polygon. 

Hence the general formula for finding the angle 𝜃 is 
360

𝑛
. 

Through the isosceles triangle theorem, we know that the bisector of angle 𝜃 will be perpendicular 

to the opposite side. Thus, line 𝑖 bisects the angle 𝜃 and creates a 90° angle with the opposite side.  

We now have a right-angled triangle (Fig. 10, Page 8), and can use trigonometric functions to find 

the length of line 𝑖. We know that the hypotenuse of the isosceles triangle formed is the radius of 

the circle, 𝑟, and therefore the following can be derived: 

cos 
𝜃

2
=
𝑖

𝑟
 

𝒏 = 4 𝒏 = 5 
Fig. 9 – Isosceles triangles formed 

within a polygon for a square, 

𝑛 = 4, and a pentagon, 𝑛 = 5 
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Substituting 𝜃 with 
360

𝑛
 and rearranging to make 𝑖 the subject gives us: 

𝑟 cos 
360

2𝑛
= 𝑖 

And finally, we can substitute this value into the earlier equation ℎ = 𝑎 − 𝑖, which gives us the 

following general equation for finding ℎ, given any value of 𝑛, 𝑎, and 𝑟: 

ℎ = 𝑎 − 𝑟 cos 
360

2𝑛
 

  

Fig. 10 – Line 𝑖 bisecting 𝜃 to give right-angled triangles for 𝑛 = 3 to 5 

(Equation 1) 
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Finding an equation for the lines of any 𝒏-sided polygon 

To find a general equation for the lines, we can rotate the polygon while keeping the volume of 

revolution the same to simplify the general formula and make subsequent calculations easier. 

To use the rotated polygon, we need to prove that the volume of revolution that is given by the 

sideways 𝑛-sided polygons is the same as the volume of revolution given by the unrotated 𝑛-sided 

polygons. The proof of this can be seen later (Page 22), as we first need to understand how we can 

derive the equations of the lines and find the volume of revolution. 

Now, we will graph rotated 𝑛-sided polygons from 𝑛 = 3 to 5. The triangle in Fig. 11 has 𝑎 = 2 and 

𝑟 = 1. This is done so that a pattern can be created to formulate a general formula. To understand 

this better, we need to take a look at Fig. 11 and Fig. 12 below. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 – Rotated polygons with 

numbered points and lines 

Fig. 12 – Unrotated polygons with 

numbered points and lines 
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In the case of the first triangle (Fig. 11), the first and third line fall within the same range of 𝑥 values, 

that is, they match up. However, in the second triangle (Fig. 12), there is no pattern that can be 

observed, as when integrating we must match the top lines with the bottom ones. This is done so 

that the area enclosed between the graphs can be found, or in my case, the volume of revolution. In 

this triangle, the first line and third line match up with the second line, while in the pentagon the 

second line matches up with the third and fourth lines and the first matches with the fourth and fifth 

lines. As we can see, there is no pattern. This can be seen in the other 𝑛-sided polygons too. In 

general, by keeping the polygon sideways, the first line always matches up with the 𝑛𝑡ℎ line, the 

second line matches up with the (𝑛 − 1)𝑡ℎ line, and so on, until we reach the vertical line for odd 

polygons or the left most vertex for even polygons. 

There are 𝑛 number of vertices in an 𝑛-sided polygon. For a triangle there are three vertices, 

𝑘1, 𝑘2, 𝑎𝑛𝑑 𝑘3 as can be seen in Fig. 11. We must find the 𝑥 and 𝑦 coordinates of each vertex to find 

the equation of the lines making up the 𝑛-sided polygon. We can use a unit circle and trigonometric 

functions to find the coordinates of each location, as the polygon is inscribed on a circle. 𝑘𝑛, or in 

the case of the triangle, 𝑘3, will always be kept constant at the right side, as seen in Fig. 11.  

 

To find 𝑘𝑛, we must find the coordinate of the fixed point, that is, the right most vertex of the 

polygon. 𝑐𝑜𝑠(360) and 𝑠𝑖𝑛(360) will give us the coordinates (0, 1), as can be seen in the unit circle 

(Fig. 13). Now, this point needs to be translated vertically upwards. As it is at the same 𝑦-coordinate 

Fig. 13 – Unit circle showing point 𝑘𝑛 at 

(𝑐𝑜𝑠(360), 𝑠𝑖𝑛(360)), i.e., (0, 1) 
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as the centre of the polygon, it will be translated upwards by 𝑎. Finally, it must be stretched 

vertically and horizontally by the scale factor 𝑟, as this will set the radius of the circle which the 

polygon is inscribed within. To make it easier to understand, we can imagine horizontally and 

vertically stretching the circle itself by 𝑟. This will set the radius of the circle. Thus, we can fix 𝑘𝑛 at 

this point, which will have the equation of – 

𝑘𝑛 = 𝑟𝑐𝑜𝑠(360), 𝑟𝑠𝑖𝑛(360) + 𝑎 

To make a regular polygon, the points are equally distanced on the circumference of the circle. Since 

we already know the formula for 𝑘𝑛, and there should be 𝑛 number of points for any 𝑛-sided 

polygon, we can use the properties of a unit circle to determine the rest of the points. Since there 

are 𝑛 number of points to fit in 360°, each point will be equally spaced by 
360

𝑛
°. As 𝑘𝑛 is at 360°, 𝑘1 

will be 
360

𝑛
° away from 𝑘𝑛 (Fig. 14). Hence, we can write 𝑘1 as – 

𝑘1 = 𝑟𝑐𝑜𝑠 (360 +
360

𝑛
) , 𝑟𝑠𝑖𝑛 (360 +

360

𝑛
) + 𝑎 

= 𝑟𝑐𝑜𝑠 (
360

𝑛
) , 𝑟𝑠𝑖𝑛 (

360

𝑛
) + 𝑎 

 

The vertices in an 𝑛-sided polygon are all 
360

𝑛
° apart. For example, the second point will be 

360

𝑛
° away 

from the first point, or, in other words, 
720

𝑛
° away from the 𝑛𝑡ℎ point. The third point will be 

360

𝑛
° 

away from the second point, or, in other words, 
1080

𝑛
° away from the 𝑛𝑡ℎ point. This pattern will 

Fig. 14 – Polygons showing each vertex is 
360

𝑛
° away from each other 
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continue further. Hence, we can obtain the general formula for finding point 𝑘𝑡 of the polygon, 

where 𝑡 is the vertex number of the 𝑛-sided polygon.  

𝑘𝑡 = 𝑟𝑐𝑜𝑠 (
360𝑡

𝑛
) , 𝑟𝑠𝑖𝑛 (

360𝑡

𝑛
) + 𝑎 

𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ 𝑍+, 0 < 𝑡 ≤ 𝑛, 𝑎, 𝑟 ∈ 𝑅 𝑎𝑛𝑑 𝑟 >
𝑎

2
 

As we can see, by plugging in 𝑛 for 𝑡, the numerator and denominator will cancel out to give us the 

general formula for the point, 𝑘𝑛. 

To find the equation of the line we need to make a general formula for the gradient of the line 

connecting any two consecutive vertices. However, as we want the first line to be between 𝑘1 and 

𝑘𝑛, we want our first line, 𝐿1, to connect vertices 𝑘𝑡  𝑎𝑛𝑑 𝑘𝑡−1. As can be seen, by plugging in 𝑡 as 1, 

we will be able to connect 𝑘1 with 𝑘0. Here, 𝑘0 = 𝑘𝑛, as in a unit circle, going 360° around the circle 

will give the same coordinates. 

The formula to find the gradient of a line is 
𝑦2−𝑦1

𝑥2−𝑥1
. As we already know the 𝑥 and 𝑦 coordinates of 

every vertex, we can substitute our previous general formula (Equation 2) into this formula to get 

the gradient of any line, 𝐿𝑡 – 

𝐿𝑡 =
 𝑟𝑠𝑖𝑛 (

360(𝑡)
𝑛 ) + 𝑎 − (𝑟𝑠𝑖𝑛 (

360(𝑡 − 1)
n ) + 𝑎)

𝑟𝑐𝑜𝑠 (
360(𝑡)
𝑛 ) − (𝑟𝑐𝑜𝑠 (

360(𝑡 − 1)
𝑛 ))

 

=
 𝑟𝑠𝑖𝑛 (

360(𝑡)
𝑛 ) − 𝑟𝑠𝑖𝑛 (

360(𝑡 − 1)
𝑛 )

𝑟𝑐𝑜𝑠 (
360(𝑡)
𝑛 ) − 𝑟𝑐𝑜𝑠 (

360(𝑡 − 1)
𝑛 )

 

=
 𝑟 (𝑠𝑖𝑛 (

360(𝑡)
𝑛 ) − 𝑠𝑖𝑛 (

360(𝑡 − 1)
𝑛 ))

𝑟 (𝑐𝑜𝑠 (
360(𝑡)
𝑛 ) − 𝑐𝑜𝑠 (

360(𝑡 − 1)
𝑛 ))

 

(Equation 2) 

(Equation 3) 
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=
 (𝑠𝑖𝑛 (

360(𝑡)
𝑛

) − 𝑠𝑖𝑛 (
360(𝑡 − 1)

𝑛
))

(𝑐𝑜𝑠 (
360(𝑡)
𝑛

) − 𝑐𝑜𝑠 (
360(𝑡 − 1)

𝑛
))

 

We can further plug this equation for the gradient (Equation 3) into the general equation of a line 

𝑦 = 𝑚𝑥 + 𝑐, as we have the general formula of the 𝑥 and 𝑦 coordinates of any point 𝑘𝑡 as well as 

the general formula of the gradient 𝑚. Thus, we can find 𝑐 as follows. 

𝑟𝑠𝑖𝑛 (
360𝑡

𝑛
) + 𝑎 = 

 (𝑠𝑖𝑛 (
360(𝑡)
𝑛

) − 𝑠𝑖𝑛 (
360(𝑡 − 1)

𝑛
))

(𝑐𝑜𝑠 (
360(𝑡 + 1)

𝑛
) − 𝑐𝑜𝑠 (

360(𝑡 − 1)
𝑛

))

× 𝑟𝑐𝑜𝑠 (
360𝑡

𝑛
) + 𝑐 

𝑐 = (𝑟𝑠𝑖𝑛 (
360𝑡

𝑛
) + 𝑎) −

 (𝑠𝑖𝑛 (
360(𝑡)
𝑛

) − 𝑠𝑖𝑛 (
360(𝑡 − 1)

𝑛
))

(𝑐𝑜𝑠 (
360(𝑡)
𝑛 ) − 𝑐𝑜𝑠 (

360(𝑡 − 1)
𝑛 ))

× 𝑟𝑐𝑜𝑠 (
360𝑡

𝑛
) 

This will give us the final general equation of any line, 𝐿𝑡, which would be given in the formula of 𝑦 =

𝑚𝑥 + 𝑐. 

𝑦 =  
 (𝑠𝑖𝑛(

360(𝑡)

𝑛
)−𝑠𝑖𝑛(

360(𝑡−1)

𝑛
))

(𝑐𝑜𝑠(
360(𝑡)

𝑛
)−𝑐𝑜𝑠(

360(𝑡−1)

𝑛
))
𝑥 + (𝑟𝑠𝑖𝑛 (

360𝑡

𝑛
) + 𝑎) −

 (𝑠𝑖𝑛(
360(𝑡)

𝑛
)−𝑠𝑖𝑛(

360(𝑡−1)

𝑛
))

(𝑐𝑜𝑠(
360(𝑡)

𝑛
)−𝑐𝑜𝑠(

360(𝑡−1)

𝑛
))
× 𝑟𝑐𝑜𝑠 (

360𝑡

𝑛
)  

(Equation 4) 
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Finding the volume of revolution of an odd 𝒏-sided regular polygon 

Now that we have the general formula to find each coordinate and each line, we can move onto 

finding the volume of revolution. However, we must find the volume of revolution of odd 𝑛-sided 

regular polygons and even 𝑛-sided polygons separately. To understand this, we need to look at Fig. 

15.  

 

As we can see, if we consider odd and even polygons together, the number of segments (seen in the 

figures as 𝑆𝑧) for a triangle will be 1, for a square and pentagon it will be 2, for a hexagon and 

heptagon it will be 3, and so on. This gives us the following pattern- 1, 2, 2, 3, 3, and so on, for an 𝑛-

sided polygon (Fig. 15). We would not be able to draw out a general formula from this pattern and 

hence we must simplify it by making two different formulae for odd and even 𝑛-sided regular 

polygons. 

 

By only looking at the segments for odd 𝑛-sided polygons (Fig. 16), a much simpler pattern appears 

for finding the number of times we need to find the area between the graphs – 1, 2, 3, 4, and so on. 

Fig. 15 – Segments shown for 𝑛 = 3 to 5 

Fig. 16 – Segments shown for 𝑛 = 3, 5, 7 
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Now we need to relate this pattern to the value of 𝑛, the number of sides of the polygon, to find a 

general formula in terms of 𝑛. Let’s define the variable 𝑧 as the number of segments in the odd 

polygon for which we must find the volume of revolution. 

When 𝑛 = 3, 𝑧 = 1 

When 𝑛 = 5, 𝑧 = 2 

When 𝑛 = 7, 𝑧 = 3 

Using the arithmetic sequence formula,  𝑢𝑛 = 𝑑(𝑛 − 1) + 𝑢1, where 𝑑 is the common difference 

between consecutive terms, 𝑢𝑛 is the 𝑛𝑡ℎ term and 𝑢1 is the first term. We are able to find the 

general formula for the pattern. 

3, 5, 7, …  

𝑛𝑧 = 2(𝑧 − 1) + 3 = 2𝑧 + 1 

As 𝑛𝑧 is the 𝑧𝑡ℎ term, it is equal to 𝑛 and therefore we can write this as-  

𝑛 = 2𝑧 + 1 

𝑧 =
𝑛 − 1

2
,𝑤ℎ𝑒𝑟𝑒 𝑧 ∈  𝑍 +   

Now that we know the number of segments, we can find the general formula to find the volume of 

revolution of an odd 𝑛-sided polygon. 

 

 

 

 

 

Fig. 17 – Heptagon with numbered segments, lines, and points 
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Now let’s consider a regular sided heptagon (Fig. 17) and try to find a general pattern for the volume 

of revolution of an odd 𝑛-sided polygon. As 𝑛 = 7, 

𝑧 =
6

2
 

𝑧 = 3 

The volume of revolution is given by – 

𝑉 = 𝜋∫ 𝑓(𝑥)2
𝑏

𝑎

𝑑𝑥. 

Looking at Fig. 17 we can say that the volume of revolution of the first segment will be given by – 

𝜋∫ (𝐿1)
2 − (𝐿𝑛)

2𝑑𝑥
𝑘𝑛

𝑘1

 

Furthermore, the volume of revolution of the second segment will be given by – 

𝜋∫ (𝐿2)
2

𝑘1

𝑘2

− (𝐿𝑛−1)
2𝑑𝑥  

And finally, the volume of revolution of the third segment will be given by – 

𝜋∫ (𝐿3)
2

𝑘2

𝑘3

− (𝐿𝑛−2)
2𝑑𝑥  

We will only use the 𝒙-coordinates of 𝒌𝒕 as we are setting the limits for the integration to take 

place on the 𝒙-axis. 

We must add all of them up to get our final answer, the volume of revolution of the heptagon. 

𝑉 = 𝜋∫ (𝐿1)
2 − (𝐿𝑛)

2𝑑𝑥
𝑘𝑛

𝑘1

+ 𝜋∫ (𝐿2)
2

𝑘1

𝑘2

− (𝐿𝑛−1)
2𝑑𝑥 + 𝜋∫ (𝐿3)

2
𝑘2

𝑘3

− (𝐿𝑛−2)
2𝑑𝑥  

Taking 𝜋 common, 



17 
 

𝑉 = 𝜋 (∫ (𝐿1)
2 − (𝐿𝑛)

2𝑑𝑥
𝑘𝑛

𝑘1

+∫ (𝐿2)
2

𝑘1

𝑘2

− (𝐿𝑛−1)
2𝑑𝑥 + ∫ (𝐿3)

2
𝑘2

𝑘3

− (𝐿𝑛−2)
2𝑑𝑥) 

Now, we can see a pattern emerging from looking at these three formulae. For the upper boundary, 

the pattern is given by – 

𝑘𝑛, 𝑘1, 𝑘2, … , 𝑘𝑝 

𝑤ℎ𝑒𝑟𝑒  0 < 𝑝 ≤ 𝑧, 𝑝 ∈ 𝑍 + 

But 𝑘𝑛 can be written as 𝑘0 since they have the same value, as explained before. This pattern then 

becomes – 

𝑘0, 𝑘1, 𝑘2, … , 𝑘𝑝 

Just looking at the sequence formed, it is – 

0, 1, 2,… , 𝑝 

Plugging this into the arithmetic sequence formula (Page 15), we get – 

𝑢𝑝 = 1(𝑝 − 1) + 0 = 𝑝 − 1 

Plugging this back into our formula for 𝑘, 

𝑢𝑝 = 𝑘𝑝−1 

Doing the same for the lower boundary, we get, 

𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑝 → 1, 2, 3, … , 𝑝 

𝑢𝑝 = 1(𝑝 − 1) + 1 = 𝑝 

𝑢𝑝 = 𝑘𝑝 

Looking at the pattern for the top line of the area enclosed by the two lines, we get – 

𝐿1, 𝐿2, 𝐿3… , 𝐿𝑝 → 1, 2, 3, … , 𝑝 

𝑢𝑝 = 1(𝑝 − 1) + 1 = 𝑝 
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𝑢𝑝 = 𝐿𝑝 

And finally, the pattern for the lower line of the area enclosed by the two lines is – 

𝑘𝑛, 𝑘𝑛−1, 𝑘𝑛−2, … , 𝑘𝑝 → 𝑛, 𝑛 − 1, 𝑛 −  2, … , 𝑝 

𝑢𝑝 = −1(𝑝 − 1) + 𝑛 = 𝑛 − 𝑝 + 1 

𝑢𝑝 = 𝐿𝑛−𝑝+1 

Now that we have the general formula for each of the parts, we have to sum it up while 

incrementing 𝑝 from 1 to the number of sections we have, i.e., 𝑧. This can be done with the 

summation of the sequence. 

𝑉 = 𝜋∑∫ (𝐿𝑝)
2
− (𝐿𝑛−𝑝+1)

2
𝑘𝑝−1

𝑘𝑝

𝑑𝑥 

𝑧

𝑝=1

 

Where the following is from Equation 2. We are only using the 𝑥 coordinates of the line, as stated 

earlier. 

𝑘𝑝−1 = 𝑟𝑐𝑜𝑠 (
360(𝑝 − 1)

𝑛
)  

𝑘𝑝 = 𝑟𝑐𝑜𝑠 (
360𝑝

𝑛
) 

The following is from Equation 4, 

𝐿𝑝 =
 (𝑠𝑖𝑛 (

360(𝑝)
𝑛 ) − 𝑠𝑖𝑛 (

360(𝑝 − 1)
𝑛 ))

(𝑐𝑜𝑠 (
360(𝑝)
𝑛 ) − 𝑐𝑜𝑠 (

360(𝑝 − 1)
𝑛 ))

𝑥 + (𝑟𝑠𝑖𝑛 (
360𝑝

𝑛
) + 𝑎)

−
 (𝑠𝑖𝑛 (

360(𝑝)
𝑛 ) − 𝑠𝑖𝑛 (

360(𝑝 − 1)
𝑛 ))

(𝑐𝑜𝑠 (
360(𝑝)
𝑛 ) − 𝑐𝑜𝑠 (

360(𝑝 − 1)
𝑛 ))

× 𝑟𝑐𝑜𝑠 (
360𝑝

𝑛
) 

(Equation 5) 
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𝐿𝑛−𝑝+1 =
 (𝑠𝑖𝑛 (

360(𝑛 − 𝑝 + 1)
𝑛

) − 𝑠𝑖𝑛 (
360(𝑛 − 𝑝)

𝑛
))

(𝑐𝑜𝑠 (
360(𝑛 − 𝑝 + 1)

𝑛
) − 𝑐𝑜𝑠 (

360(𝑛 − 𝑝)
𝑛

))

𝑥 + (𝑟𝑠𝑖𝑛 (
360(𝑛 − 𝑝 + 1)

𝑛
) + 𝑎)

−
 (𝑠𝑖𝑛 (

360(𝑛 − 𝑝 + 1)
𝑛 ) − 𝑠𝑖𝑛 (

360(𝑛 − 𝑝)
𝑛 ))

(𝑐𝑜𝑠 (
360(𝑛 − 𝑝 + 1)

𝑛 ) − 𝑐𝑜𝑠 (
360(𝑛 − 𝑝)

𝑛 ))

× 𝑟𝑐𝑜𝑠 (
360(𝑛 − 𝑝 + 1)

𝑛
) 
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Finding the volume of revolution of an even 𝒏-sided polygon 

We can now follow the same steps to find the general formula for the volume of revolution of even 

𝑛-sided polygons. First, let’s find the formula to find the number of segments in the even 𝑛-sided 

polygons, 𝑞, by looking at Fig. 18. 

  

When 𝑛 = 4, 𝑞 = 2 

When 𝑛 = 6, 𝑞 = 3 

When 𝑛 = 8, 𝑞 = 4 

Hence the pattern formed will be – 

4, 6, 8, …  

𝑛 = 2(𝑞 − 1) + 2 = 2𝑧 

𝑧 =
𝑞

2
   

Now we will consider an octagon (Fig. 19) to find the pattern for the even 𝑛-sided polygon. 

 

 

Fig. 18 – Segments shown for 𝑛 = 4, 6, 8 
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As we can see in Fig. 19, the rest of the sequences remain the same. 𝐿1corresponds with 𝐿𝑛, 𝐿2 

corresponds with 𝐿𝑛−1, and so on, just as it did for the heptagon earlier. Hence, the same general 

formula (Equation 5) to find the volume of revolution applies to the even 𝑛-sided polygons. The only 

difference is that the formula for finding the number of segments for even polygons, 𝑞, is different 

from the formula for finding the number of segments for odd polygons, 𝑧. Thus, we get – 

𝑉 = 𝜋∑∫ (𝐿𝑝)
2
− (𝐿𝑛−𝑝+1)

2
𝑑𝑥

𝑘𝑝−1

𝑘𝑝

 

𝑞

𝑝=1

 

  

Fig. 19 – Octagon with segments, 

lines, and points numbered 

(Equation 6) 
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Proving that rotating the 𝒏-sided polygon sideways will have the same volume of 

revolution 

Now that we know how to find the volume of revolution of the polygons, we can prove that the 𝑛-

sided polygons that are rotated sideways have the same volume as the 𝑛-sided polygons that have 

not been rotated. First, we prove that the volume of revolution of the two triangles in Fig. 11 and 12 

are the same (where 𝑎 = 2 and 𝑟 = 1). First, finding the volume of revolution of the sideways 

triangle can be given by the equation we found (Equation 5). 

𝑉 = 𝜋∑∫

(

  
  (𝑠𝑖𝑛 (

360(𝑝)
3 ) − 𝑠𝑖𝑛 (

360(𝑝 − 1)
3 ))

(𝑐𝑜𝑠 (
360(𝑝)
3 ) − 𝑐𝑜𝑠 (

360(𝑝 − 1)
3 ))

𝑥 + (𝑟𝑠𝑖𝑛 (
360𝑝

3
) + 𝑎)

𝑟𝑐𝑜𝑠(
360(𝑝−1)

3
)

𝑟𝑐𝑜𝑠(
360𝑝
3
)

1

𝑝=1

−
 (𝑠𝑖𝑛 (

360(𝑝)
3

) − 𝑠𝑖𝑛 (
360(𝑝 − 1)

3
))

(𝑐𝑜𝑠 (
360(𝑝)
3

) − 𝑐𝑜𝑠 (
360(𝑝 − 1)

3
))

× 𝑟𝑐𝑜𝑠 (
360𝑝

3
)

)

  
 

2

−

(

  
  (𝑠𝑖𝑛 (

360(3 − 𝑝 + 1)
3 ) − 𝑠𝑖𝑛 (

360(3 − 𝑝)
3 ))

(𝑐𝑜𝑠 (
360(3 − 𝑝 + 1)

3 ) − 𝑐𝑜𝑠 (
360(3 − 𝑝)

3 ))

𝑥

+ (𝑟𝑠𝑖𝑛 (
360(3 − 𝑝 + 1)

3
) + 𝑎)

−
 (𝑠𝑖𝑛 (

360(3 − 𝑝 + 1)
3 ) − 𝑠𝑖𝑛 (

360(3 − 𝑝)
3 ))

(𝑐𝑜𝑠 (
360(3 − 𝑝 + 1)

3 ) − 𝑐𝑜𝑠 (
360(3 − 𝑝)

3 ))

× 𝑟𝑐𝑜𝑠 (
360(3 − 𝑝 + 1)

3
)

)

  
 

2

𝑑𝑥  
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𝑉 = 𝜋∫ (
 (𝑠𝑖𝑛(120) − 𝑠𝑖𝑛(0))

(𝑐𝑜𝑠(120) − 𝑐𝑜𝑠(0))
𝑥 + (𝑠𝑖𝑛(120) + 2) −

 (𝑠𝑖𝑛(120) − 𝑠𝑖𝑛(0))

(𝑐𝑜𝑠(120) − 𝑐𝑜𝑠(0))
× 𝑐𝑜𝑠(120))

2
𝑐𝑜𝑠(0)

𝑐𝑜𝑠(120)

− (
 (𝑠𝑖𝑛(360) − 𝑠𝑖𝑛(240))

(𝑐𝑜𝑠(360) − 𝑐𝑜𝑠(240))
𝑥 + (𝑠𝑖𝑛(360) + 2)

−
 (𝑠𝑖𝑛(360) − 𝑠𝑖𝑛(240))

(𝑐𝑜𝑠(360) − 𝑐𝑜𝑠(240))
× 𝑐𝑜𝑠(360))

2

𝑑𝑥 

𝑉 = 𝜋∫

(

 
 

 (
√3
2 )

(−
1
2
− 1)

𝑥 + (
√3

2
+ 2) −

 (
√3
2 )

(−
1
2
− 1)

× −
1

2

)

 
 

2

−

(

 
 
 (
√3
2 )

(1 +
1
2
)
𝑥 + (2) −

 (
√3
2 )

(1 +
1
2
)

)

 
 

2

𝑑𝑥
1

−
1
2

 

≈ 16.32 

Now we have to find the volume of revolution of the unrotated 

triangle (Fig. 20), but as there is no pattern, we cannot use a formula 

and must check it by finding the equations and then segments 

manually. As I have already explained how to find the equation for 

the coordinates and the lines in an earlier section, I will simply state 

them here. The 𝑘𝑛 point will be at the top at 𝑐𝑜𝑠(90), 𝑠𝑖𝑛(90). 

Equation for the coordinates – 

𝑟𝑐𝑜𝑠 (90 +
360𝑡

𝑛
) , 𝑟𝑠𝑖𝑛 (90 +

360𝑡

𝑛
+ 𝑎) 

Equation for the line – 

𝑚 =
 (𝑠𝑖𝑛 (90 +

360𝑡
𝑛 ) − 𝑠𝑖𝑛 (90 +

360(𝑡 − 1)
𝑛 ))

(𝑐𝑜𝑠 (
360𝑡
𝑛 ) − 𝑐𝑜𝑠 (90 +

360(𝑡 − 1)
𝑛 ))

 

Fig. 20 – Segments for an 

unrotated regular triangle 
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𝑐 = (𝑟𝑠𝑖𝑛 (90 +
360𝑡

𝑛
) + 𝑎) −

 (𝑠𝑖𝑛 (90 +
360(𝑡)
𝑛

) − 𝑠𝑖𝑛 (90 +
360(𝑡 − 1)

𝑛
))

(𝑐𝑜𝑠 (90 +
360(𝑡)
𝑛

) − 𝑐𝑜𝑠 (90 +
360(𝑡 − 1)

𝑛
))

× 𝑟𝑐𝑜𝑠 (90 +
360𝑡

𝑛
) 

𝑦 =
 (𝑠𝑖𝑛 (90 +

360𝑡
𝑛
) − 𝑠𝑖𝑛 (90 +

360(𝑡 − 1)
𝑛

))

(𝑐𝑜𝑠 (90 +
360𝑡
𝑛
) − 𝑐𝑜𝑠 (90 +

360(𝑡 − 1)
𝑛

))

𝑥 + (𝑟𝑠𝑖𝑛 (90 +
360𝑡

𝑛
) + 𝑎)

−
 (𝑠𝑖𝑛 (90 +

360(𝑡)
𝑛 ) − 𝑠𝑖𝑛 (90 +

360(𝑡 − 1)
𝑛 ))

(𝑐𝑜𝑠 (90 +
360(𝑡)
𝑛 ) − 𝑐𝑜𝑠 (90 +

360(𝑡 − 1)
𝑛 ))

× 𝑟𝑐𝑜𝑠 (90 +
360𝑡

𝑛
) 

Now, we must find the volume of revolution of the first segment, 

𝑉 = 𝜋∫

(

  
  (𝑠𝑖𝑛 (90 +

360
3 ) − 𝑠𝑖𝑛

(90 + 0))

(𝑐𝑜𝑠 (90 +
360
3
) − 𝑐𝑜𝑠(90 + 0))

𝑥 + (𝑠𝑖𝑛 (90 +
360

3
) + 2)

𝑐𝑜𝑠(90+0)

𝑐𝑜𝑠(90+
360
3
)

−
 (𝑠𝑖𝑛 (90 +

360
3 ) − 𝑠𝑖𝑛

(90 + 0))

(𝑐𝑜𝑠 (90 +
360
3 ) − 𝑐𝑜𝑠

(90 + 0))

× 𝑐𝑜𝑠 (90 +
360

3
)

)

  
 

2

−

(

  
  (𝑠𝑖𝑛 (90 +

360 × 2
3

) − 𝑠𝑖𝑛 (90 +
360
3
))

(𝑐𝑜𝑠 (
360 × 2
3 ) − 𝑐𝑜𝑠 (90 +

360
3 ))

𝑥 + (𝑠𝑖𝑛 (90 +
360 × 2

3
) + 2)

−
 (𝑠𝑖𝑛 (90 +

360 × 2
3 ) − 𝑠𝑖𝑛 (90 +

360
3 ))

(𝑐𝑜𝑠 (90 +
360 × 2
3 ) − 𝑐𝑜𝑠 (90 +

360
3 ))

× 𝑐𝑜𝑠 (90 +
360 × 2

3
)

)

  
 

2

𝑑𝑥 
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= 𝜋∫

(

 
  (−

1
2
− 1)

(−
√3
2 )

𝑥 + (−
1

2
+ 2) −

 (−
1
2
− 1)

(−
√3
2 )

× −
√3

2

)

 
 

2

0

−√
3
2

−

(

 
  (−

1
2 +

1
2)

(
√3
2
+
√3
2 )

𝑥 + (−
1

2
+ 2) −

 (−
1
2 +

1
2)

(
√3
2
+
√3
2 )

×
√3

2

)

 
 

2

𝑑𝑥 

= 𝜋∫

(

 
  (−1.5)

(−
√3
2 )

𝑥 + (1.5) −
 (−1.5)

(−
√3
2 )

× −
√3

2

)

 
 

2

− (1.5)2𝑑𝑥
0

−√
3
2

 

≈ 8.162 

Then, we must find the volume of revolution of the second segment. As the triangle is split in half to 

form the two segments, the volume of revolution of segment 1 equals to the volume of revolution of 

segment 2. Thus, it will be – 

≈ 8.162 

Adding up the two segments we get, 

≈ 16.32 

This value is equal to the value given by our formula. Hence, the volume of revolution of the rotated 

triangle and the regular triangle are equal. Therefore, it makes no difference if we use the rotated 

triangle for the general formula, as it gives the correct answer. 

When 𝑛 = ∞, a circle will be formed. Rotating the circle will make no difference, as a circle has no 

sides. 

Since we have proved it for 𝑛 = 3 and  𝑛 = ∞, we can say that it should hold true for all other values 

in between. This can be said as the volume of revolution for increasing the value of 𝑛 follows a set 

pattern starting at 16.32 for a triangle and converging at 39.48 (Table 1). 
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Analysis and Evaluation 

As we now have our final equation, we can create a table and graph to better understand the results 

by considering various different values of 𝑛. We can further prove that the equation created is 

correct by setting 𝑛 to infinity and using the equation to find the volume of the torus. As long as we 

keep the dimensions constant, both equations should give us the same result as the one obtained 

when 𝑛 = ∞, thus validating the equation. 

We can also find ℎ as we have 𝑎 = 2 and 𝑟 = 1. According to Equation 1, it would be – 

ℎ = 2 − cos 
360

2𝑛
 

We can look at Table 1 to see the values for ℎ and the volume of revolution of increasing values of 𝑛 

when 𝑎 = 2 and 𝑟 = 1. 

𝒏 𝒉 Volume of Revolution 

3 1.5 16.3241942781 

4 1.29289321881 25.1327412287 

5 1.19098300563 29.8783216474 

6 1.13397459622 32.6483885562 

7 1.0990311321 34.3867445833 

8 1.07612046749 35.5430635053 

9 1.06030737921 36.3487829834 

10 1.0489434837 36.9316366098 

1,000 1.0000049348 39.4781578473 

10,000 1.00000004935 39.4784150068 

 
Table 1 – Volume of Revolution for increasing 𝑛 values (𝑎 = 2 and 𝑟 = 1) 
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The equation to find the volume of a torus can be given by – 

(2𝜋𝑅) × (𝜋𝑟2) 

𝑅 and 𝑟 are seen in Fig. 21. 

By looking at Fig. 22, we can see that 𝑟 in the formula of the 

torus is the same as the radius of the circle which the polygon is 

inscribed within, 𝑟. 𝑅 is the distance from the 𝑥-axis to the 

centre of the circle, i.e., the centre of the 𝑛-sided polygon, 𝑎. 

 

 

Hence, the equation of the torus can be rewritten with my variables – 

(2𝜋𝑎)  × (𝜋𝑟2) 

As the table was created for 𝑎 = 2 and 𝑟 = 1, we will use the same values here to compare the 

volume of revolution when 𝑛 is at infinity with the volume of the torus – 

𝑉 = (4𝜋) × (𝜋) = 4𝜋2 

Fig. 21 – A diagram of a torus with 

its variables shown 

Fig. 22 – Comparing the variables 𝑅 with 𝑎 by 

looking at a torus on 𝑥-axis 
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= 39.4784176 ≈ 39.48 

As we can see, when 𝑛 = 10000, the volume of revolution is also ≈ 39.48 (from Table 1). As I 

cannot input infinity into the calculator, I set 𝑛 as 10,000, because it is a large enough number to 

approximate infinity and makes the polygon almost indistinguishable from a circle. Thus, this can be 

used to estimate the volume of a torus. 

The results of the equation can also be visualised in Graph 1 – 

 

 

The orange line is 𝑦 = 39.4784176, the volume of the torus. This line is an asymptote to the curve 

formed by the increasing 𝑛 values, as when 𝑛 = ∞, it will reach this value and ℎ will be equal to 1. 

This gives us a mathematical model to calculate the volume of a regular 𝑛-sided (𝑛 ≥ 3, 𝑛 ∈  𝑍+) 

polygon rotated 360° around the 𝑥-axis to form a ring with variable radius, ℎ (ℎ ∈  𝑅 +), and 

therefore, answer the research question. 
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Graph 1 – Volume of Revolution for increasing 𝑛 values (𝑎 = 2 and 𝑟 = 1) 
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Conclusion 

In conclusion, I have mathematically explored and derived the formula to find the volume of 

revolution of a regular 𝑛-sided polygon rotated 360° around the 𝑥-axis. First, I set the parameters 

for my variables to ensure that only a ring, and not a closed figure, will be formed. I then placed the 

polygons in a unit circle to try and derive a general formula for the 𝑥 and 𝑦 coordinates of each and 

any of their vertices, 𝑘𝑡. By utilizing the coordinates and the formula for finding a gradient of a line, I 

then found the gradient, 𝑚, of any straight line formed between consecutive vertices, 𝐿𝑡 . By doing 

so, I fit the coordinates and gradient into the general equation for a straight line to get the value of 

the 𝑦-intercept of the line, 𝑐. Once I had my final value, 𝑐, I simply input my gradient and 𝑦-intercept 

into the general formula to find the equation of each and any line, 𝐿𝑡. Next, I graphed the polygon in 

such a way that the volume of revolution would not change but a pattern is visible, and thus, a 

general formula can be formed. I achieved this by rotating the polygon 90° to the right while 

keeping it within the circle it was inscribed within. I then split the polygon into 𝑧 (for odd values of 𝑛) 

or 𝑞 (for even values of 𝑛) segments so that I could find the volume of revolution of each segment to 

find the total volume of revolution of the regular 𝑛-sided polygon. By analysing the pattern formed 

and plugging it into an arithmetic sequence, I then derived a general formula required for each part 

of the volume of revolution, i.e., the upper boundary, the lower boundary, and the lines that would 

be used to find the volume of revolution of the segment. To construct the final equation, I summed 

up the sequence, starting from 𝑝 = 1 and ending at 𝑧 or 𝑞, and then plugged in the equations of the 

lines. Then I drew a table and graphed my results for clarity. Finally, I proved that the mathematical 

model derived is correct through using the equation of the volume of a torus and the volume of 

revolution for when 𝑛 = ∞. As I cannot input infinity as a value into my sequence, I used a large 

value of 10,000 to approximate the circle and find the volume of revolution. Comparing this to the 

torus, I validated my mathematical equation that finds the volume of revolution of any regular 𝑛-

sided polygon. Thus, I explored the subject of this extended essay and answered the research 

question successfully. 
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