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Finding the centre of mass for 2D and 3D objects with uniform 

density 

Introduction 

The centre of mass is vital in knowing the stability 

of the structure. If we know the centre of mass of a 

structure, we can calculate the tipping point of an 

object. Knowing the centre of mass can help us 

construct shapes that are harder to knock over, 

which can then have important uses in automotive 

construction, aeronautics, and architecture. In a 

scenario that the centre of mass is too high, 

skyscrapers can topple over during an earthquake – 

even if they are resistant enough to withstand it, as seen in Fig. 1. The 

first building has a high centre of mass and thus, when tilted, the centre 

of mass no longer passes through the base. This would cause it to topple 

over. On the other hand, the second building’s centre of mass is much 

lower and passes through the base even when tilted, hence it is unlikely 

to topple over. This is also the reason that the popular Leaning Tower of 

Pisa does not fall (Fig. 2). 

As shown, a low centre of mass can lower the risk of tall objects 

falling over or can even lower the risk of race cars flipping when 

making sharp turns. Thus, it is of great importance in ensuring 

our safety, and many objects should be carefully designed to guarantee our safety by 

Fig. 1 – Centre of mass passing through 

a building 

Fig. 2 – Centre of mass 

ensuring that the Leaning 

Tower of Pisa doesn’t tip 
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confirming the centre of mass mathematically. I look forward to trying to improve the safety 

of different products across various fields through exploring the topic of centre of mass. 

In my individual assessment, I will attempt to create general formulae to find the centre of mass 

for different shapes. By doing so, I wish to make it so that we can better mathematically 

determine the improvements that can possibly be made to the aforementioned fields. 

Finding the centre of mass in a 2D lamina with uniform density 

First, we must find the centre of mass in a 2D lamina1. A lamina is a sheet that is thin enough 

that it can be treated as though it is two-dimensional. We will be assuming that the density of 

the lamina is uniform, as this can affect the placement of the centre of mass. 

A lamina can be represented as a 2D region. The geometric centre of this region is known as 

the centroid1. On either side of the centroid, the area will be equal. On the other hand, on either 

side of the centre of mass, the mass will be equally distributed. However, as we are assuming 

that the lamina has uniform density, the geometric centre, the centroid, will also correspond to 

the centre of mass. 

Let’s take a look at Fig. 3 to see the general lamina for which we will be finding the centre of 

mass. 

 
1 LibreTexts. (2021, January 2). 6.6: Moments and Centers of Mass. Mathematics LibreTexts. 

https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/06%3A_Applications_of_Int

egration/6.6%3A_Moments_and_Centers_of_Mass 
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The lamina is given by the shaded region, bound by a continuous function 𝑓(𝑥) and the 𝑥-axis. 

The function used here is 𝑓(𝑥) = 𝑥2 + 5𝑥, however any function can be used to create a 

lamina. To find the centre of mass, we need to find the moments of the lamina with respect to 

the 𝑥 and 𝑦 axes as well as the total mass of the lamina. Moment is defined as the product of 

the mass times the distance from the axis2. Then, we can use the following formula1 to find the 

coordinates of the centre of mass –  

𝑥𝑐 =
𝑀𝑦

𝑚
 𝑎𝑛𝑑 𝑦𝑐 =

𝑀𝑐

𝑚
 

Where 𝑥𝑐 and 𝑦𝑐 are the 𝑥-coordinate and 𝑦-coordinate of the centre of mass, respectively, and 

where 𝑀𝑥 and 𝑀𝑦 are the moments with respect to the 𝑥 and 𝑦 axes, respectively. 𝑚 is the total 

mass of the lamina. To find the horizontal moment, we need to look at the moment with respect 

to the 𝑦-axis. Hence, the lamina’s moment with respect to 𝑦-axis gives us the 𝑥-coordinate of 

 
2 LibreTexts. (2020, December 21). 3.7: Moments and Centers of Mass. Mathematics LibreTexts. 

https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/3%3A_

Multiple_Integrals/3.7%3A_Moments_and_Centers_of_Mass 

Fig. 3 – Diagram of a lamina 

modelled by a function f(x) 
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the centroid. To find the vertical moment, we look at the moment with respect to the 𝑥-axis, 

which is why it is used to find the 𝑦-coordinate. 

We can now split this curve into several small rectangles by partitioning the interval between 

the roots 0 and 5 into several 𝑛 number of rectangles. The 𝑚𝑡ℎ rectangle would have 𝑥𝑚+1 −

𝑥𝑚 as the interval, where 0 < 𝑚 < 𝑛, 𝑚 ∈ 𝑍 +. Fig. 4 shows one such rectangle. 

Rectangles always have their centre of mass at the vertical and horizontal centres of the shape 

when the density is uniform. This is because the horizontal and vertical centres split the 

rectangle into two symmetrical halves and thus have the same area and mass on both sides, 

assuming density is constant. This is the symmetry principle3 which states that if a region, 𝑅, 

is symmetrical about a line, 𝐿, then the centroid will lie on that line or the intersection of the 

lines of symmetry. 

We will denote the 𝑥-coordinate of the centroid of the 𝑚𝑡ℎ rectangle as 𝑥𝑚
∗, where 0 < 𝑚 <

𝑛. The width of one rectangle would just be the change in the 𝑥, or 𝑥𝑚+1 − 𝑥𝑚, which is 

extremely small and can be denoted by Δ𝑥. The height of a rectangle can be determined by 

plugging this point into the function 𝑓(𝑥), which is 𝑓(𝑥𝑚
∗). The height of the centre of mass 

of the rectangle will be half of the vertical length, that is, the vertical centre. Thus, the centre 

of mass for rectangle 𝑚 will be at (𝑥𝑚
∗,

 𝑓(𝑥𝑚
∗)

2
), which can be seen in Fig. 4 below. 

 

 

 

 
3 Centre of Mass. (n.d.). Isaac Physics. 

https://isaacphysics.org/concepts/cp_centre_mass#:~:text=An%20object%20or%20collection%20of,some%20p

oint%20along%20that%20line. 
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The density of the lamina can be represented by 𝜌. We are now equipped to find the area and 

mass of the rectangles. First, the area of the rectangle would be given by 𝑙 × 𝑤, or in our 

scenario, 𝑓(𝑥𝑚
∗) × 𝛥𝑥. The mass of the rectangle would just be given by multiplying the 

density, 𝜌, with our area, thus giving us the formula for finding the mass, which is –  

𝜌𝑓(𝑥𝑚
∗)𝛥𝑥 

To approximate the mass of the whole lamina, we have to add all masses of the rectangles –  

𝑚 = ∑ 𝜌𝑓(𝑥𝑚
∗)𝛥𝑥

𝑛

𝑚=1

 

By taking an infinite number of rectangles, we can approximate the area under the curve with 

a method in calculus known as the Riemann sum4. We can take the limit of 𝑛 to infinity to 

estimate the area under the curve as follows –  

lim
𝑛→∞

∑ 𝜌𝑓(𝑥𝑚
∗)𝛥𝑥

𝑛

𝑚=1

 

 
4 Left & right Riemann sums (article). (n.d.). Khan Academy. https://www.khanacademy.org/math/ap-calculus-

ab/ab-integration-new/ab-6-2/a/left-and-right-riemann-sums 

Fig. 4 – Splitting the region into small 

rectangles. One rectangle (red) shown with 

the coordinates of its centre of mass 
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= ∫ 𝜌𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 

= 𝜌 ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 

Where 𝑎 and 𝑏 are the limits of the integration which bound the lamina, which in our scenario 

are the roots of the function, 1 and 5. 

Now that we know the total mass of the lamina, we can move on to finding the total moment 

with respect to the 𝑥-axis. We can treat the rectangle as though it were a point mass located at 

the centre of mass. This can be done as the centre of mass is a theoretical point where all the 

mass can be considered to be concentrated. Thus, the moment of the lamina with respect to the 

𝑥-axis is given by mass multiplied by the distance from the 𝑥-axis. 

We have already derived that the mass of the rectangle is given by 𝜌𝑓(𝑥𝑚
∗)𝛥𝑥. The remaining 

value, the distance of the centre of mass from the 𝑥-axis, or the height of the centre of mass, is 

 𝑓(𝑥𝑚
∗)

2
 (Fig. 4). Therefore, we get the following formula, which gives us the moment of the 

rectangle with respect to the 𝑥-axis, 𝑀𝑅𝑥 –  

𝑀𝑅𝑥 = 𝜌𝑓(𝑥𝑚
∗)𝛥𝑥 ×

 𝑓(𝑥𝑚
∗)

2
 

= 𝜌
(𝑓(𝑥𝑚

∗))
2

2
𝛥𝑥 

However, this is just the moment of one rectangle with respect to the 𝑥-axis. We must again 

use the Riemann Sum, by adding the moments of infinite rectangles and taking the limit to 

infinity –  

𝑀𝑥 = lim
𝑛→∞

∑ 𝜌
(𝑓(𝑥𝑚

∗))
2

2
𝛥𝑥

𝑛

𝑚=1
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= ∫ 𝜌
(𝑓(𝑥))

2

2

𝑏

𝑎

𝑑𝑥 

= 𝜌 ∫
(𝑓(𝑥))

2

2

𝑏

𝑎

𝑑𝑥 

We can follow the same steps to find the moment of the rectangle with respect to the 𝑦-axis, 

𝑀𝑅𝑦. Looking back at Fig. 4, we know the distance from the 𝑦-axis to the centroid is 𝑥𝑚
∗, as 

that is the 𝑥-coordinate of the centre of mass. Hence, we can find the moment with respect to 

the 𝑦-axis –  

𝑀𝑅𝑦 = 𝜌𝑓(𝑥𝑚
∗)𝛥𝑥 × 𝑥𝑚

∗ 

= 𝑥𝑚
∗𝜌𝑓(𝑥𝑚

∗)𝛥𝑥 

Taking the limit to infinity to find the total moment with respect to the 𝑦-axis would give us –  

𝑀𝑦 = 𝑙𝑖𝑚
𝑛→∞

∑ 𝜌𝑥𝑚
∗𝑓(𝑥𝑚

∗)𝛥𝑥

𝑛

𝑚=1

 

= ∫ 𝜌𝑥𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 

= 𝜌 ∫ 𝑥𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 

Plugging the total mass of the lamina and the total moments into our earlier equation which 

give us the coordinates of the centre of mass, 𝑥𝑐 =
𝑀𝑦

𝑚
 𝑎𝑛𝑑 𝑦𝑐 =

𝑀𝑥

𝑚
, gives us the final 

equation–  
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𝑥𝑐 =
𝜌 ∫ 𝑥𝑓(𝑥)

𝑏

𝑎
𝑑𝑥

𝜌 ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥

 
𝑦𝑐 =

𝜌 ∫
(𝑓(𝑥))

2

2
𝑏

𝑎
𝑑𝑥

𝜌 ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥

 

𝑥𝑐 =
∫ 𝑥𝑓(𝑥)

𝑏

𝑎
𝑑𝑥

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥

 
𝑦𝑐 =

∫
(𝑓(𝑥))

2

2
𝑏

𝑎
𝑑𝑥

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥

 

 

To prove this, we can try to find the centre of mass of a square lamina and see if it is at the 

vertical and horizontal centre. We can do this by taking the function 𝑓(𝑥) = 2, and taking the 

limits of integration as 2 and 4. This would create the lamina as seen in Fig. 5. 

The expected point would be (3, 1), as that is the vertical 

and horizontal geometric centre of the square. 

Now plugging in our values in the formula we derived, we 

get the following for the 𝑥-coordinate –  

𝑥𝑐 =
∫ 2𝑥

4

2
𝑑𝑥

∫ 2
4

2
𝑑𝑥

 

=
[𝑥2] 4

2

[2𝑥] 4
2

 

=
16 − 4

8 − 4
=

12

4
= 3 

Likewise, plugging in our values to find the 𝑦-coordinate of the centre of mass gives us–  

𝑦𝑐 =
∫

(2)2

2
4

2
𝑑𝑥

∫ 2
4

2
𝑑𝑥

 

Fig. 5 – Lamina created by 

f(x)=2 and bound by the 

region 2<x<4 
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=
∫ 2

4

2
𝑑𝑥

∫ 2
4

2
𝑑𝑥

= 1 

Hence, we get our final coordinates (3,1), which proves that our derived equation was correct. 

Combining centre of masses for different laminae to find the centre of mass for an 

irregular lamina 

Now that we know the equation to find the centre of mass of a lamina, we can find the centre 

of mass of two different 2D laminae and then combine them together to find a new centre of 

mass for the resulting irregular lamina. 

The lamina can be considered as a point mass at the centre of mass as mentioned beforehand – 

thus, we can find the new centre of mass if we know the coordinates of all the point masses. If 

we have 𝑛 number of laminae with the centre of mass at points (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑛, 𝑦𝑛), 

then we can find the total mass of the new lamina created by adding up the individual masses 

of the component laminae –  

𝑚 = ∑ 𝑚𝛼

𝑛

𝛼=1

 

We can find the moment with respect to the 𝑥-axis by the following formula as the moment is 

the mass multiplied by the distance from the 𝑥-axis, or in other words, the 𝑦-coordinate of the 

centre of mass –  

𝑀𝑥 = ∑ 𝑚𝛼

𝑛

𝛼=1

𝑦𝛼 

Doing the same for the moment with respect to the 𝑦-axis we get –  

𝑀𝑦 = ∑ 𝑚𝛼

𝑛

𝛼=1

𝑥𝛼 
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Finally, we can plug in our new mass and moments into our 

previous formula to get the coordinates of the new combined 

centre of mass –  

𝑥𝑐 =
∑ 𝑚𝛼

𝑛
𝛼=1 𝑥𝛼

𝑚
 𝑎𝑛𝑑 𝑦𝑐 =

∑ 𝑚𝛼
𝑛
𝛼=1 𝑦𝛼

𝑚
 

 To understand this better, we can look at the three laminae 

in Fig. 6. The three, square laminae have their centre of mass 

at (1, 1), (3, 1), and (1, 3), respectively. 

Let us assume that all have the same unit mass of 4, as they all have the same unit area of 4 and 

have uniform density. Thus, 𝑚 = 4 + 4 + 4 = 12. And –  

𝑀𝑥 = 4 × 1 + 4 × 1 + 4 × 3 

= 4 + 4 + 12 

= 20 

𝑦𝑐 =
20

12
=

5

3
 

𝑀𝑦 = 4 × 1 + 4 × 3 + 4 × 1 

= 4 + 12 + 4 

= 20 

𝑥𝑐 =
20

12
=

5

3
 

Hence, the final coordinates for the centre of mass of the new lamina would be (
5

3
, 

5

3
). 

We can also cut a shape of a lamina out of another lamina through this method. In this case, 

the mass of the lamina that we are removing would be 

negative, but the formula remains the same. Looking at Fig. 

7, we can see a circle lamina cut out of a square lamina and 

find the centre of mass accordingly. 

The area of the circle is given by 𝜋𝑟2, and as 𝑟 = 1, the 

area is simply 𝜋. 

Fig. 6 – Three square laminae 

Fig. 7 – A square lamina with a 

circle lamina cut out from within 
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The density is uniform, meaning we can take the mass as 𝜋 and plug it into the formula. As we 

are removing the circle, the mass of the circle will be denoted as negative –  

𝑚 = 4 − 𝜋 

The centre of mass of the circle is (1,1), just like the square. 

Hence, we get the following values for moments –  

𝑀𝑥 = 4 × 1 − 𝜋 × 1 = 4 − 𝜋 

𝑀𝑦 = 4 × 1 − 𝜋 × 1 = 4 − 𝜋 

This gives us the final coordinates of the new lamina formed –  

𝑥𝑐 =
4 − 𝜋

4 − 𝜋
= 1 

𝑦𝑐 =
4 − 𝜋

4 − 𝜋
= 1 

The centre of mass is remains at (1,1), as at that point, the area of the new lamina is split evenly. 

This also shows that a centre of mass can be outside a lamina as well. 

Finding the centre of mass for 3D shapes using volume of revolution 

3D shapes are more complicated than 2D laminae, and thus we can’t find a general equation as 

easily as for 2D shapes. Hence, I will be finding a general equation for 3D cones and segments 

of cones, as well as for half of an ellipsoid, which forms a turbine. Through the symmetry 

principle, we already know that shapes such as cubes and cuboids will have their centre of mass 

at exactly half of their length, width, and height, as that gives the centroid of the regular 3D 

shape. However, for shapes like cones, truncated cones, and shapes similar to plane turbines, 

the centre of mass is more complicated to find. 
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Starting with a cone, we can find the centre of mass through the first moment integral. Similar 

to the method for finding the centre of mass of a lamina, we can split the cone into several 

slices of circles starting from the bottom at the largest circle and going up to a point (Fig. 8). 

If we imagine the cone to be placed on the 𝑥, 𝑦, and 𝑧 axes, we 

can see that it is symmetrical about two axes, in particular, the 𝑥 

and 𝑧 axes. Therefore, the centre of mass would lie at a point (0, 

𝑦𝑐, 0). To find the 𝑦-coordinate of the centre of mass, we have 

to find the mass of the cone and the moments just like in a 

lamina. However, in a lamina, the moment is given by mass 

multiplied by distance. The mass here would be calculated by 

adding up infinite slices of circles – therefore, we must know the rate of change of volume as 

we move along the 𝑦-axis, that is, 𝑑𝑉. The distance of the circle from the origin would be given 

by the value of 𝑦. Instead of integrating along the 𝑥-axis as done earlier, to add up the infinite 

number of circles, we must integrate along the 𝑦-axis now. Thus, we can form our equation5 as 

follows –  

𝜌 ∫ 𝑑𝑉 × 𝑦
𝑏

𝑎
𝑑𝑦

𝑚
 

This can be rewritten as –  

𝜌 ∫ 𝑑𝑉 × 𝑦
𝑏

𝑎
𝑑𝑦

𝜌𝑉
 

=
∫ 𝑑𝑉 × 𝑦

𝑏

𝑎
𝑑𝑦

𝑉
 

 
5 Moore, J., Chatsaz, M., d’Entremont, A., Kowalski, J., & Miller, D. (n.d.). Mechanics Map - The Centroid and 

Center of Mass in 3D via the First Moment Integral. Mechanics Map. 

http://mechanicsmap.psu.edu/websites/A2_moment_intergrals/centroids_3D/centroids3D.html 

Fig. 8 – A cone with one 

slice forming a circle (red) 
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Here, 𝑑𝑉 is an equation that describes the cross-sectional area of the shape along the 𝑦 direction 

for any given 𝑦 value. 

This equation would differ for cones of different radii and sizes, but we can still formulate a 

general equation. To do so, we must first take a simple linear equation and use volume of 

revolution to find the volume of the cone formed (Fig. 9). 

We will write it in the form of 𝑥 = 𝑚𝑦 + 𝑐, as we will be finding the volume of revolution 

around the 𝑦-axis. The gradient will be taken as negative so that we can form a downward 

sloping line and revolve it around the axis to form a cone. For example, we can take 𝑥 =

−0.5𝑦 + 2, as seen in Fig. 9. 

However, the points at which the line cuts the 𝑦-axis and 𝑥-axis, 𝑝 and 𝑞, can be set as variables 

to form a large variety of cones. If 𝑝 is set as a high value, then 

the cone will be taller and if 𝑞 is set as a large value then the 

cone will be wider, with a greater radius. 

We can find the equation of the line by looking at the points it 

cuts the axes. 𝑥 = 𝑚𝑦 + 𝑐, where 𝑐 is where the line cuts the 𝑥-

axis, that is, 𝑞. At point 𝑝, 𝑥 = 0 and hence 0 = 𝑚𝑝 + 𝑞. This 

means that 𝑚 = −
𝑞

𝑝
. We now have the equation of our line –  

𝑥 = −
𝑞

𝑝
𝑦 + 𝑞 

Now that we have the equation of our line, we can plug it into the formula for volume of 

revolution, 𝑉 = ∫ 𝜋𝑥2𝑏

𝑎
𝑑𝑦. This gives us the following equation –  

𝑉 = 𝜋 ∫ (−
𝑞

𝑝
𝑦 + 𝑞)

2𝑏

𝑎

𝑑𝑦 

Fig. 9 – A linear equation 

formed by 𝑥 = −0.5𝑦 + 2 
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= 𝜋 ∫ (
𝑞2

𝑝2
𝑦2 −

2𝑞2

𝑝
𝑦 + 𝑞2)

𝑏

𝑎

𝑑𝑦 

= 𝜋 [
𝑞2

3𝑝2
𝑦3 −

2𝑞2

2𝑝
𝑦2 + 𝑞2𝑦]

𝑏

𝑎
 

= 𝜋 ((
𝑞2

3𝑝2
𝑏3 −

2𝑞2

2𝑝
𝑏2 + 𝑞2𝑏) − (

𝑞2

3𝑝2
𝑎3 −

2𝑞2

2𝑝
𝑎2 + 𝑞2𝑎)) 

This equation then gives us the formula to find the volume of every type of cone that can be 

created which depend on the variables 𝑞 and 𝑝. To create a cone, the limits of the integration 

𝑏 will be the highest point of the cone and 𝑎 will be the lowest point, that is, the base of the 

cone which is equal to 0. Hence, we can rewrite the equation to find the volume as –  

𝜋 (
𝑞2

3𝑝2
𝑏3 −

2𝑞2

2𝑝
𝑏2 + 𝑞2𝑏) 

Now that we know our volume, we need to find an equation for the rate of change of volume 

at any given 𝑦 point. As mentioned earlier, this is the same as the cross-sectional area. Thus, 

we need to find an equation for the cross-sectional area at any given point on the 𝑦-axis. 

For a cone this is relatively easy, as the circle formed by the cross-sectional area (Fig. 8). 

decreases linearly according to the equation of the line.  

 

Fig. 10 – Different radii at 

different 𝑦 values 
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The area of the circle is given by 𝜋𝑟2. Looking at Fig. 10, we can see that the radius of the 

circle corresponds with the 𝑥 value at any given 𝑦 value. We already have the equation of the 

line and can replace 𝑥 with 𝑟. This can be done as they both have the same value, given that 

the centre of the cone is at the origin – which it will be, as we used volume of revolution to 

create it. Hence, we get our equation for 𝑑𝑉 = 𝜋𝑟2, where 𝑟 = −
𝑞

𝑝
𝑦 + 𝑞. Therefore –  

𝑑𝑉 = 𝜋 (−
𝑞

𝑝
𝑦 + 𝑞)

2

 

Then, by plugging in our equation for the volume and 𝑑𝑉 into our original equation of 

∫ 𝑑𝑉×𝑦 
𝑏

𝑎 𝑑𝑦

𝑉
, we can find our final equation, which is –  

∫ 𝜋 (−
𝑞
𝑝 𝑦 + 𝑞)

2

𝑦
𝑏

𝑎
𝑑𝑦

𝜋 (
𝑞2

3𝑝2 𝑏3 −
2𝑞2

2𝑝 𝑏2 + 𝑞2𝑏)
 

=
𝜋 [

𝑞2

4𝑝2 𝑦4 −
2𝑞2

3𝑝 𝑦3 +
𝑞2𝑦2

2 ] 𝑏
𝑎

𝜋 (
𝑞2

3𝑝2 𝑏3 −
𝑞2

𝑝 𝑏2 + 𝑞2𝑏)
 

=
(

𝑞2

4𝑝2 𝑏4 −
2𝑞2

3𝑝 𝑏3 +
𝑞2𝑏2

2
) − (

𝑞2

4𝑝2 𝑎4 −
2𝑞2

3𝑝 𝑎3 +
𝑞2𝑎2

2
)

(
𝑞2

3𝑝2 𝑏3 −
𝑞2

𝑝 𝑏2 + 𝑞2𝑏)
 

However, 𝑎 = 0 as mentioned earlier. Thus, our equation becomes –  

(
𝑞2

4𝑝2 𝑏4 −
2𝑞2

3𝑝 𝑏3 +
𝑞2𝑏2

2
)

(
𝑞2

3𝑝2 𝑏3 −
𝑞2

𝑝 𝑏2 + 𝑞2𝑏)
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And thus, we can find the final 𝑦-coordinate of the centre of the mass of any cone. The centre 

of mass would be at (0, 
(

𝑞2

4𝑝2𝑏4−
2𝑞2

3𝑝
𝑏3+

𝑞2𝑏2

2
)

(
𝑞2

3𝑝2𝑏3−
𝑞2

𝑝
𝑏2+𝑞2𝑏)

, 0). Furthermore, we can also find the centre of mass 

of any segment of the cone by slicing the cone vertically. We simply have to make the limit of 

the integrations different. For example, by making the upper limit of the integration, 𝑏, to a 

value which is not at the top of the cone, but rather, in the middle of the cone, and then using 

this same formula so that the value of 𝑝 and 𝑞 remain the same, we can find the centre of mass 

for an object such as a truncated cone in Fig. 11. 

 

 

We can find the centre of mass for other 3D shapes as well, using the same method and different 

equations. For example, using a quadratic equation will give us a smooth aeroplane turbine 

shaped 3D object. We can also make a variety of prisms, such as a triangular prism, by finding 

different equations for 𝑑𝑉 and 𝑉. I decided to find the general equation for any cone and 

truncated cone, as they are one of the most basic and important which are used in a wide variety 

of products. For example, a truncated cone can be used to resemble a car exhaust or a different 

type of turbine. We already know the centre of mass of cubes, cuboids, and cylinders as there 

is so slope, and hence, we can easily find the centroid of the shapes. Furthermore, by combining 

different 3D shapes together, we can find the centre of mass of more irregular and unique 

shapes, which can be pieced together to create a new product. For example, placing a cone or 

Fig. 11 – Figure formed by 

setting a smaller value for 𝑏 
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triangular prism on a cuboid can give us a simple approximation of a house with a slanted roof. 

The walls of the house will be mostly made from one material such as brick or concrete and 

hence will have nearly uniform density, and the roof can also be mainly made from one material 

and can be said to have uniform density. 

Combining 3D shapes to find the centre of mass of an irregular 3D object 

Just like with 2D laminae, 3D shapes can also be combined to form an irregular 3D shape6, and 

the new centre of mass can be found. This is done through the method of composite parts. For 

this to work, similar to what we did for the 2D laminae, we must know the 𝑥, 𝑦, and 𝑧 

coordinates of the 3D objects. We can then treat the centre of mass as a point object and 

multiply the 𝑥, 𝑦, and 𝑧 coordinates of the centre of mass with the mass of the 3D object to find 

the moment. We can further add all the moments of the 3D objects present in the composite 

shape to find the total moment in the directions of the 𝑥, 𝑦, and 𝑧 axes. To finish, we simply 

add up the masses of every 3D shape to find the total mass, and then we can find the coordinates 

of the centre of mass of the composite shape using the formula below. I will use 𝑥𝑘 for the 

coordinates of the new centre of mass to differentiate it from its composite parts’ coordinates–  

𝑥𝑘 =  
𝑀𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠
 

Hence, we can write the full equation as follows –  

𝑥𝑘 =
∑ 𝑚𝑖𝑥𝑐𝑖

𝑛
𝑖=1

𝑚𝑡𝑜𝑡𝑎𝑙
 for the     

𝑥-coordinate 

 
6 Moore, J., Chatsaz, M., d’Entremont, A., Kowalski, J., & Miller, D. (n.d.-a). Mechanics Map - Centroids via 

the First Moment Integral. Mechanics Map. 

http://adaptivemap.ma.psu.edu/websites/A2_moment_intergrals/method_of_composite_parts/methodofcomposit

eparts.html#:%7E:text=To%20use%20the%20method%20of,relative%20to%20this%20origin%20point. 

𝑦𝑘 =
∑ 𝑚𝑖𝑦𝑐𝑖

𝑛
𝑖=1

𝑚𝑡𝑜𝑡𝑎𝑙
 for the    

𝑦-coordinate 

𝑧𝑘 =
∑ 𝑚𝑖𝑧𝑐𝑖

𝑛
𝑖=1

𝑚𝑡𝑜𝑡𝑎𝑙
 for the     

𝑧-coordinate 
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Thus, we can find the coordinates for the centre of mass of a new, irregular 3D shape. We can 

also use the same theory as we did with the laminae to find the centre of mass of irregular 

objects by removing a portion of the object by taking the mass as negative. 

Conclusion 

In this exploration, my aim was to investigate centre of masses by creating mathematical 

models for finding the centre of mass in 2D and 3D shapes. To start with, I found a general 

equation to find the centre of mass in any 2D sheet or lamina. I then combined various 2D 

laminae to create a new lamina with a different centre of mass. This method is particularly 

useful, as it allows us to find the centre of mass for a wide range of laminae with several 

different combinations. 

Next, I attempted to find the centre of mass in 3D shapes. This is significantly more difficult 

than 2D shapes, as the cross-sectional area differs for each shape. This makes it extremely hard 

to create a general formula. However, by using volume of revolution, I was able to create a 

general equation to find the centre of mass in cones and truncated cones. My equation can be 

modified for other shapes as well, such as a smooth airplane turbine. By considering different 

cross-sectional areas, it is also possible to create a wide variety of shapes from prisms to cones. 

Cubes, cuboids and cylinders and other such prism shapes which have no slope have their 

centre of mass at the centre of the width, height, and length of the shape. Therefore, there is no 

need to formulate an equation for these shapes. 

Once I was able to find the centre of mass of the cone and truncated cone, I moved onto creating 

a composite 3D shape from other 3D shapes. To do this, we need to know the coordinates of 

the centre of mass for each shape, which can be calculated, as described earlier. By linking 

together cones, cubes, cuboids, and cylinders, it is possible to create complex unique 3D objects 

and find their centre of mass. Moreover, the 3D objects can also be removed to insert a hollow 
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space in the combined 3D object, by taking the mass as negative. This allows for a wide array 

of objects. 

Limitations and Applications: 

Although the I was able to create a general formula for 3D cones which can be modified to 

create other shapes as well, the method to find the centre of mass is still not perfect for 3D 

objects. Some such calculations are far too complicated, and thus must be calculated either 

using computer tools or through experimental methods. Further research can be done in 

creating general formulae for other common 3D shapes to improve upon the method for finding 

centre of mass in 3D objects. 

Overall, the investigation proved to be successful, and general equations were able to be 

formulated. These may further be used to make basic calculations and approximations when 

designing a product which requires the centre of mass to be considered, thus potentially 

improving the safety of the product with regards to the fields mentioned before. The results of 

this investigation can be effectively applied in the design of a variety of products and show the 

investigation was successful. 
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