Investigating the relationship between radius and pressure difference in a tube

Introduction:

Tubes are an essential device that have thousands of applications in our daily lives. In the
form of a blood vessel, tubes allow the transportation of blood cells, nutrients, and oxygen to the
tissues of our bodies. However, these blood vessels slowly become narrower through a buildup of
plaque, resulting in higher blood pressure and excess strain in order to keep the blood flow rate
constant!. This can be demonstrated by the following diagram:
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Figure 1. Blood vessel cross-section

As a child, my grandfather had a heart attack? — a cardiovascular disease that occurs when
blood flow to the heart is severely reduced or cut off completely. Even though | was left
traumatized after the experience, it sparked my interest and led me explore the causes and
principles behind a heart attack. As | grew up, my curiosity further rose after realizing the physics
behind this principle. So, | decided to conduct an experiment exploring the effect of changing the
size of the radius of a blood vessel and how much more pressure was required to keep the rate of
blood flow constant, which helped me determine the focus of my experiment with the following
research question: To what extent does a change in the radius of a tube affect the pressure
difference at both its ends when the volume flow rate is constant?

Mathematical derivation for the investigation:

The pressure difference between two ends of a tube can be mathematically derived through
the Hagen-Poiseuille equation. (Where Q is the volume flow rate, AP is the pressure difference,
and R is the resistance to the flow.)

! High Blood Pressure. (n.d.). Heart. https://www.heart.org/en/health-topics/high-blood-pressure/health-threats-
from-high-blood-pressure/now-high-blood-pressure-can-lead-to-a-heart-attack
2 What is a Heart Attack? (n.d.). Heart. https://www.heart.org/en/health-topics/heart-attack/about-heart-attacks



The resistance R can be determined by the following equation. (Where 1 is the viscosity of
the liquid, L is the length of the tube, and r is the radius of the tube.)
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Therefore, the equation can be rewritten as:
TAPr* _
Q= 8nL (Equation 1)
; . _ e8nL
Solving for AP: (k = )
—Q= mAPr* — AP = kr™* (Equation 4)
8nL
— Q8nL = mAPr* — log AP = log kr™*
L, Ap = &L (Equation 2) — log AP = logr~*+logk
rd
— AP o« 1% (Equation 3) — log AP = —4logr +logk (Equation5)

The relationship between pressure difference AP and radius r is determined through equation
3. Since the relationship between them is not linear, | have decided to linearize it with the use of
logarithms in equation 5.

The investigation of this relationship is significant as it can assist doctors and biomedical
engineers to identify the optimal radii of blood vessels and better understand the excess stress on
the heart when a blood vessel is compromised or restricted. In order to investigate this relationship,
| have decided to create an experiment where tubes with radii of 1.25mm, 1.50mm, 1.75mm,
2.00mm, 2.25mm and 2.50mm will be used to determine the pressure difference.

Hypothesis:
The pressure difference AP will decrease as the radius of tube r is increased. There is a
logarithmic relationship between AP and r given as: log AP = —4logr + log k, where, given

that k& remains constant, there will be linear graph with gradient -4 between log(AP) and log(r)
passing through the y-intercept at point (0, log k). Further, the equation AP = kr~*, where k
remains constant, will give an inverse quartic graph between AP and r.



Variables:

A) Independent variable: Radius of the tube (cm). The tubes are kept straight in order to
minimize resistance and tubes of the same material is used. The radii used are 1.25mm,
1.50mm, 1.75mm, 2.00mm, 2.25mm and 2.50mm

B) Dependent variable: Pressure difference between the two ends of the tube (Pa)

C) Controlled variables:

1) Viscosity of liquid:
a) Reason: As observed in equation 2, the viscosity of the liquid is directly related to
the dependent variable, AP, and hence must remain constant.
b) Method: The viscosity of the liquid was controlled by only utilizing a single liquid
which was relatively pure water at a constant temperature.

2) Length of tube:
a) Reason: As observed in equation 2, the length of the tube is directly related to the
dependent variable, AP, and hence must remain constant.
b) Method: The length of the tube was controlled by cutting all five tubes of different
radii to the fixed length of 15cm.

3) Volume flow rate:

a) Reason: As observed in equation 2, the volume flow rate of the liquid is directly
related to the dependent variable, AP, and hence must remain constant at all times
in the experiment.

b) Method: According to equation 1, as the radius of the tube is increased, the volume
flow rate is also increased. In order to keep the volume flow rate of the liquid
constant, first the volume flow rate will be calculated for the radius that is used;

This will be done by calculating %Where IV is the volume in the first flask (at

50.0cm?®) and t is the time taken for volume to reach 0.0cm?®. Then the pressure
difference will be changed using the vacuum system in the second flask in order
to make volume flow rate exactly 5.0cm?®s, and that pressure difference will be
recorded.

4) Temperature:

a) Reason: The temperature should be kept constant as the viscosity of a fluid has an
inverse relationship with temperature®. Also changing the temperature would
cause expansion or contraction of the tubes and liquid causing slight variations in
the readings.

b) Method: To keep the value of temperature constant, the entire experiment was
conducted in an air-conditioned room with a fixed temperature of 20°C.

3 Elert, G. (n.d.). Viscosity. The Physics Hypertextbook. https://physics.info/viscosity/



Apparatus & Material

Apparatus Properties Quantity
Measurements up to 100.0cm?®

Flask Connector and valve at the bottom 2
Closed flask connected to VS

Stopwatch Least count: 0.1s 1

Digital Manometer Least count: 1kPa 2

Vacuum System (VS) - 2

Table 1. Apparatus and properties

Material Properties Quantity
Radii: (1.25, 1.50, 1.75, 2.00, 2.25, 2.50)

Tubes mm 5
Length: 15.0cm

Water Relatively pure -

Table 2. Materials and properties
Method:
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Figure 2. Experiment setup




Procedure:

1)
2)
3)
4)
5)
6)
7)

8)
9)

Connect tube of 1.25mm radius between both flasks

Enter 50.0cm? water in container flask

Close container flask lid and set pressure for the left VS to 1000kPa
Open the water valve and start timer instantaneously

Stop timer when container flask has 0.0cm?®water left

Calculate volume flow rate by%

If volume flow rate is not approximately 5cm?3s* then regulate the right VS (increase or
decrease pressure depending on equation 2)

Repeat steps 2-6 until volume flow rate is 5cm?s* approximately

Record the reading on manometer and turn off VC

10) Repeat steps 2-8 at least 3 times
11) Repeat steps 2-10 with tube of radius: (1.50, 1.75, 2.00, 2.25, 2.50) mm

Risk assessment

In the experiment there are no major risk assessments; The liquid used is not hazardous and
there are no sharp objects to be concerned about. Liquid spills may be dangerous causing one to

lose their balance and slip, so a dry cloth should be kept. When preparing for the experiment, tubes
must be cut to a certain length, hence scissors must be used carefully to avoid casualties. Finally
glass flasks must be handled carefully as if it were to be dropped, it would shatter creating many

sharp glass shards. Further, the water will be reused as throughout the experiment with minimal
wastage and will be drained into the fields after use. Overall, there are no environmental and ethical
concerns in the experiment, thus we can conclude that this is a safe experiment.

Qualitative Assessment

- Throughout the day of data collection, temperature in the room often fluctuated between 19°C
and 21°C when measured through a thermometer. The experiment was halted until the

temperature remained a steady 20°C.

- The receptor flask lid contraption quickly proved to be insufficient to hold the rarefaction of air
as small leakages around the lid kept the flask from lowering its pressure. Blu-Tack (a putty

like adhesive) was then applied around the lid every time the vacuum system was in use.

- The volume flow rate was not entirely constant throughout the flow of water from one flask to

the other because as the water left the container flask, the pressure of the container flask

struggled to stay at a constant of 1000kPa and dipped by 20kPa when the valve was first opened.
This dip was negligible as in the first 3 seconds the pressure rose back to 1000kPa as the vacuum
system began accounting for the difference.



Data collection & analysis

Pressure (P + 1) kPa
F(ini%sjgf)-mg]e Trial 1 Trial 2 Trial 3 Mea;l) ir;assure
1.25 221 223 216 220+5
1.50 626 624 620 623 +4
1.75 792 796 797 7954
2.00 878 876 879 878+3
2.25 927 924 923 925+3
2.50 953 950 957 953+4

Table 3. Radius and corresponding pressure (P) at right VS

Calculations for table 3:
The mean pressure was calculated using the formula:

P, + P, + P;
3

The uncertainty of the mean pressure was calculated using the formula

I max ~ P, min p
2 + uncertainity

Sample calculation of mean pressure for r = 1.25mm:

Average = 22”23& ~ 220 kPa (0 decimal places)

Uncertainty = @ + 1 = 4.5 = 5 kPa (0 decimal places)

Here, 1 is added due to the uncertainty in the measurement of pressure (digital manometer).

Radius of Tube Mean Pressure Difference
(r £0.01) mm AP kPa

1.25 7806

1.50 377+5

1.75 205+5

2.00 122 +4

2.25 754

2.50 47 +5

Table 4. Radius and corresponding mean pressure difference (AP)



Calculations for table 4:
The mean pressure difference was calculated using the formula using values from table 3:
(Pressure at left VS) — P
Sample calculation of mean difference pressure for r = 1.25mm:
Pressure difference = 1000 — 220 = 780 kPa
Uncertainty of mean pressure adds with the uncertainty in measurement of left VC (1kPa).

Uncertainty = 4+ 1 = 5 kPa

log(Radius of Tube) log(Mean Pressure Dif ference)
log(r) No unit log(AP) No unit
0.0969 + 0.0035 2.892 + 0.003
0.1761 + 0.0029 2.576 + 0.006
0.2430 £ 0.0025 2.312+0.011
0.3010 £ 0.0022 2.086 + 0.014
0.3522 + 0.0019 1.875 +0.023
0.3979 £ 0.0017 1.672 + 0.046

Table 5. Converting the data into logarithmic form

Calculations for table 5:
The log(Radius of Tube) was calculated from the formula below using table 3:

logi1o(7)
Uncertainty for log(Radius of Tube)was calculated from the formula below using table 3:

o (r + uncertainity of T)
910\ —uncertainity of v
2

Sample calculation of log(Radius of Tube) for r = 1.25mm:

log(Radius of Tube) =1log,,(1.25) ~ 0.0969 (4 decimal places)

. 10910(ﬁ) .
Uncertainty = % ~ 0.0035 (4 decimal places)

Continued next page...




log(Mean Pressure Dif ference) was calculated from the formula below using table 3:

log10(AP)

Uncertainty for log(Mean Pressure Dif ference) was calculated from the formula below
using table 3:

I (AP + uncertainity of AP)
0910 \ AP —uncertainity of AP

2

Sample calculation of log(Mean Pressure Dif ference) for r = 1.25mm:

log(Mean Pressure Dif ference) = log,,(780) ~ 2.892 (3 decimal places)

. lOglo(E) .
Uncertainty = T’”’ ~ 0.003 (3 decimal places)

Graphical analysis

y =666.67x* - 5722.4x3 + 18522x2 - 26985x + 15120
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Graph 1. Mean pressure difference(kPa) vs Radius of Tube(mm) with a quartic LOBF

The error bars for the mean pressure difference are very small and thus are not visible. From
the data collected and plotted, the graph supports a quartic relationship. This can be realized by
seeing that Graph 1, with a quartic line of best fit (LOBF), intersects all 6 plotted error bars. This
is consistent with the hypothesis, in that there is an inverse quartic relationship between the
radius and pressure difference. However, as Graph 1 suggests, the equation of the line mapped
(top right) also includes the coefficients of x3, x2, and x, meaning that there are in fact sources of
error, and its effects can be visualized.
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Graph 2. log(Mean Pressure Dif ference) VS log(Radius) with max, min and normal LOBF

Processing of Graph 2 Data

Gradient = -4.024 y-intercept = 3.287

Minima Gradient = -3.822 Minima y-intercept = 3.246

Maxima Gradient = -4.292 Maxima y-intercept = 3.326

Gradient Uncertainty = ~*22*3%22 = 10,235 y-intercept Uncertainty = **=2% = 40,080
Gradient Percent Uncertainty = %ﬁ;}oo =5.8% y-intercept Percent Uncertainty = O'O;EQ;OO =2.4%
Gradient Percent Error = w = 0.6% y-intercept Percent Error = W =0.2%

The LOBF is a negative linear graph and intersects all plotted error bars. The LOBF gradient
can be written as -4.024 £ 0.235, and the y-intercept can be written as 3.287 £ 0.080. The minima
LOBF and maxima LOBF represent a 5.8% uncertainty in the gradient and 2.4% uncertainty in
the y-intercept which can be attributed to random error as precision is relatively low.

The value of R?, the square of the correlation coefficient, is 0.99965. R? evaluates the strength
of the relationship between two variables. This value can be assessed using the table below, where
we can infer that the experiment provided data has a very strong correlation, thus low systematic
error.

Range of R? Strength of Correlation
Below 0.49 Weak

0.50 to 0.69 Moderate

0.70 to 0.89 Strong

0.90 to 1.00 Very strong

Table 6. R? and its corresponding strength of relationship



log (AP) = —4logr + log k (Equation 5)

__ Q8nL .
AP = — (Equation 2)

4

. L . . . .
Sincek = Q%, the units for equation 2 can be substituted as (where k’s units are unknown)
k 4
Pa = 7 ~ k =mm*Pa
mm

Q8nL _ 5000x%8+1%150

Thus, calculating k gives = ~ 1.910 * 10® mm*Pa. Then, converting the

Y
units to mm*kPa to make the pascal unit the same as the data gathered gives k =
1910 mm*kPa. Finally logging this value gives log(k) =~ 3.281 which is the literature y-
intercept. According to the equation 5, the literature gradient is -4. Both calculated gradient and
y-intercept in the graph fall within the range of error seen in graph 2 and, hence, the data collected
is consistent with the hypothesis. Equation 5 can then be accepted.

Conclusion

After collecting, processing and analyzing the data, the results can confirm the hypothesis.
“The pressure difference AP will decrease as the radius r is increased” can be supported by looking
at graph 1 and 2, where this is evident in the form of a negative correlation. To linearize the
equation, both sides were logged, and log (Mean pressure dif ference) was plotted against
log (radius) in graph 2. The line of best fit clearly indicated a linear relationship between log(AP)
and log(r), which is directly supported by the hypothesis. According to the hypothesis, the gradient
of the line of best fit of graph 2 should be -4. This was supported by the data because the gradient
fell within range of error of the line of best fit. The hypothesis also indicated that the y-intercept
will be at “point (0, log k),” which also supported as the calculated y-intercept fell within the range
of error of the line of best fit. Graph 1 and 2 also revealed that there was an inverse quartic
relationship that could be seen when the mean pressure difference was plotted against the radius
of the tube. Thus, all points in the hypothesis were confirmed.

On one hand, it can be observed that the experiment had relatively high accuracy, determined
by comparing the calculated values to the results. This demonstrates that there was a relatively low
percentage systematic error within the experiment, proving that the experiment design was
successful. On the other hand, however, we can see that the precision of the experiment was
relatively low for table 4, 5 and graph 2, attributed due to the fact that some of the pressure trials
for a certain radius had the range of uncertainty up to 12 kPa. This led to the uncertainty in the
LOBF in graph 2 to be 5.8% in value. This means there was comparatively higher percent random
error than percent systematic error. A few factors may have played into this like the reaction time
or not being able to precisely perceive when there is exactly no more water left in the container
flask; these conditions will be explored further in the evaluation.

Overall, the research question “To what extent does a change in the radius of a tube affect
the pressure difference at both its ends when the volume flow rate is constant?” was
effectively answered and was worth investigating, where the final equation, that was result of the
experiment, can be expressed in the form: log AP = (—4.024 + 0.235)logr + (3.287 + 0.080)



Evaluation

Strengths of the experiment

This experiment exhibits very low systematic error, up to only 0.6%, proving that the
experiment designed was incredibly accurate and effective. With the use of modulated vacuum
systems on both container flasks, the experiment was actively controlled and altered to keep the
pressure difference consistent, which wouldn’t be the case if one of the flasks was kept open due
to air conditioning wind currents or pressure inaccuracies due to temperature. Further, attention to
detail to the smallest variables was a priority in my experiment such as taking precautions like
regularly checking the temperature and waiting until the temperature stabilizes or using putty to
minimize pressure inaccuracies all contributed in substantially lowering systematic errors during

the experiment.

Weaknesses of the experiment

Source of error & effects

Significance & evidence

Possible improvements

Systematic errors affecting accuracy

Volume flow rate: This wasn’t
consistent as the pressure
difference deviated by 20kPa

when the valve was first opened.

Low significance:

- The vacuum system accounted
for the decrease in pressure in
the first 3 seconds, so the
results were not affected much.

Use a vacuum system which is
more responsive to changes in
the pressure, thus stabilizing the
decrease in pressure more
quickly.

Temperature of water in tubes:
In smaller radius tubes the
pressure and speed of the water
is higher, and thus experiences
more friction than its larger
counterpart.

Low significance:

- The temperature change is
negligible and thus any
systematic error is
unnoticeable.

Utilize tubes which are smooth
and have a high heat capacity,
allowing for heat to get
absorbed.

Radius of tube: The radius
within the tube may not be of
linear radius, shifting results

slightly in either direction.

Low significance:

- If the radius of the tube was
not consistent then the plotted
mean pressure difference
against radius would be
noticeably skewed.

Fill tube with water. Remove
water in flask. Measure volume

%4
then use the formular = —

to confirm radius is accurate.

Limited amount of data: There
were 6 radii used in the
experiment for 3 trials. Less
trials means lower accuracy
given in results

Low significance:
- The number of trials done, and
radii used proved sufficient to
confirm the hypothesis.

Take up to 12 varied radii of
tubes and use 9 trials.




Random errors affecting precision

Reaction time: Led to stopwatch High significance: Take a video of the water
being clicked too late and to the | - Some pressure trials in table 4 . .
X emptying out. Review footage
wrong calculation of volume had range of up to 12kPa
. . . . on computer to get exact value
flow, affecting the pressure leading to high gradient of time taken
difference values collected. uncertainty in graph 2 LOBF. '
Stopwatch precision: The Low significance: Put dark food coloring into the
stopwatch had an uncertainty of | - Uncertainty of 0.1s translates water and add a light sensor at
0.1s, which gives a inaccurate to a less than 1% relative the end of the tube, which will
value for volume flow rate uncertainty. give time to the nearest 0.001s.

Moderate significance:

Barometer precision: The digital | - Urllclef)r(')tainty of 1kPa leads to

barometer had an uncertainty of - = 1.2% percentage Use a new digital barometer of
1kPa, which gives an inaccurate uncertainty for pressure lower uncertainty.
value for pressure difference in 2.5mm radius
tube.
Volume flow rate: The value for Moderate significance: Be more stringent on the volume

flow rate, only using them if

within a smaller range than

0.1cm3s?, would reduce this
error.

volume flow rate was used ifit’s | - Uncertainty of 0.1cm?s™ leads

within 0.1cm3s?, resulting in to 2222 = 2% percentage

inaccurate pressure readings uncertainty.

Table 6. Weaknesses and limitations effecting results and its improvements

Further research suggestions

The relationship between the pressure difference between both ends of a
tube and linear obstruction in the tube can be tested. This would more closely
resemble the real-life scenario of narrowed blood vessels by plaque. This can
be more clearly seen in the figure 3 where the lighter gray is the flow area.

In this experiment, large tubes of the same radius will be taken, where
each tube will contain a circle segment of clay throughout the tube as shown in
figure 3. The 8 of the segment will be the independent variable and will be
increased from 0, the pressure difference between the ends of the tube will be
the dependent variable will be measured, and the volume flow rate will be kept
constant. The rest of the experiment will be performed the same.

Figure 3. Extension
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