
Investigating the relationship between radius and pressure difference in a tube 

Introduction: 

Tubes are an essential device that have thousands of applications in our daily lives. In the 

form of a blood vessel, tubes allow the transportation of blood cells, nutrients, and oxygen to the 

tissues of our bodies. However, these blood vessels slowly become narrower through a buildup of 

plaque, resulting in higher blood pressure and excess strain in order to keep the blood flow rate 

constant1. This can be demonstrated by the following diagram: 

As a child, my grandfather had a heart attack2 – a cardiovascular disease that occurs when 

blood flow to the heart is severely reduced or cut off completely. Even though I was left 

traumatized after the experience, it sparked my interest and led me explore the causes and 

principles behind a heart attack. As I grew up, my curiosity further rose after realizing the physics 

behind this principle. So, I decided to conduct an experiment exploring the effect of changing the 

size of the radius of a blood vessel and how much more pressure was required to keep the rate of 

blood flow constant, which helped me determine the focus of my experiment with the following 

research question: To what extent does a change in the radius of a tube affect the pressure 

difference at both its ends when the volume flow rate is constant? 

Mathematical derivation for the investigation: 

The pressure difference between two ends of a tube can be mathematically derived through 

the Hagen-Poiseuille equation. (Where 𝑄 is the volume flow rate, ∆𝑃 is the pressure difference, 

and 𝑅 is the resistance to the flow.) 

𝑄 =  
∆𝑃

𝑅
 

 
1 High Blood Pressure. (n.d.). Heart. https://www.heart.org/en/health-topics/high-blood-pressure/health-threats-

from-high-blood-pressure/how-high-blood-pressure-can-lead-to-a-heart-attack 
2 What is a Heart Attack? (n.d.). Heart. https://www.heart.org/en/health-topics/heart-attack/about-heart-attacks 



The resistance 𝑅 can be determined by the following equation. (Where η is the viscosity of 

the liquid, L is the length of the tube, and 𝑟 is the radius of the tube.) 

𝑅 =  
8ηL

𝜋𝑟4
 

Therefore, the equation can be rewritten as:                 

𝑄 =  
𝜋∆𝑃𝑟4

8ηL
   

Solving for ∆𝑃:  (𝑘 =  
𝑄8ηL

𝜋
) 

→ 𝑄 =  
𝜋∆𝑃𝑟4

8ηL
 

→ 𝑄8ηL =  𝜋∆𝑃𝑟4 

→ ∆𝑃 =  
𝑄8ηL

𝜋𝑟4
 

→ ∆𝑃 ∝  𝑟−4          

→ ∆𝑃 =  𝑘𝑟−4                       

→ 𝑙𝑜𝑔 ∆𝑃  =  𝑙𝑜𝑔 𝑘𝑟−4 

→ 𝑙𝑜𝑔 ∆𝑃  =  𝑙𝑜𝑔 𝑟−4 + 𝑙𝑜𝑔 𝑘 

→ 𝑙𝑜𝑔 ∆𝑃  =  −4𝑙𝑜𝑔 𝑟 + 𝑙𝑜𝑔 𝑘 

 

The relationship between pressure difference ∆𝑃 and radius 𝑟 is determined through equation 

3. Since the relationship between them is not linear, I have decided to linearize it with the use of 

logarithms in equation 5.  

The investigation of this relationship is significant as it can assist doctors and biomedical 

engineers to identify the optimal radii of blood vessels and better understand the excess stress on 

the heart when a blood vessel is compromised or restricted. In order to investigate this relationship, 

I have decided to create an experiment where tubes with radii of 1.25mm, 1.50mm, 1.75mm, 

2.00mm, 2.25mm and 2.50mm will be used to determine the pressure difference. 

 

Hypothesis: 

The pressure difference ∆𝑃 will decrease as the radius of tube 𝑟 is increased. There is a 

logarithmic relationship between ∆𝑃 and 𝑟 given as:  𝑙𝑜𝑔 ∆𝑃  =  −4𝑙𝑜𝑔 𝑟 + 𝑙𝑜𝑔 𝑘, where, given 

that 𝑘 remains constant, there will be linear graph with gradient -4 between 𝑙𝑜𝑔( ∆𝑃) and 𝑙𝑜𝑔( 𝑟) 

passing through the y-intercept at point (0, 𝑙𝑜𝑔 𝑘). Further, the equation ∆𝑃 =  𝑘𝑟−4, where 𝑘 

remains constant, will give an inverse quartic graph between ∆𝑃 and 𝑟. 

  

(Equation 1) 

 

(Equation 2) 

 (Equation 3) 

 

(Equation 4) 

 

(Equation 5) 

 



Variables: 

A) Independent variable: Radius of the tube (cm). The tubes are kept straight in order to 

minimize resistance and tubes of the same material is used. The radii used are 1.25mm, 

1.50mm, 1.75mm, 2.00mm, 2.25mm and 2.50mm 
 

B) Dependent variable: Pressure difference between the two ends of the tube (Pa) 

C) Controlled variables:  

1) Viscosity of liquid: 

a) Reason: As observed in equation 2, the viscosity of the liquid is directly related to 

the dependent variable, ∆𝑃, and hence must remain constant. 

b) Method: The viscosity of the liquid was controlled by only utilizing a single liquid 

which was relatively pure water at a constant temperature. 
 

2) Length of tube: 

a) Reason: As observed in equation 2, the length of the tube is directly related to the 

dependent variable, ∆𝑃, and hence must remain constant. 

b) Method: The length of the tube was controlled by cutting all five tubes of different 

radii to the fixed length of 15cm. 
 

3) Volume flow rate: 

a) Reason: As observed in equation 2, the volume flow rate of the liquid is directly 

related to the dependent variable, ∆𝑃, and hence must remain constant at all times 

in the experiment. 

b) Method: According to equation 1, as the radius of the tube is increased, the volume 

flow rate is also increased. In order to keep the volume flow rate of the liquid 

constant, first the volume flow rate will be calculated for the radius that is used; 

This will be done by calculating 
𝑉

𝑡
 where 𝑉 is the volume in the first flask (at 

50.0cm3) and 𝑡 is the time taken for volume to reach 0.0cm3. Then the pressure 

difference will be changed using the vacuum system in the second flask in order 

to make volume flow rate exactly 5.0cm3s-1, and that pressure difference will be 

recorded. 
 

4) Temperature: 

a) Reason: The temperature should be kept constant as the viscosity of a fluid has an 

inverse relationship with temperature3. Also changing the temperature would 

cause expansion or contraction of the tubes and liquid causing slight variations in 

the readings.  

b) Method: To keep the value of temperature constant, the entire experiment was 

conducted in an air-conditioned room with a fixed temperature of 20°C. 

 

 

 
3 Elert, G. (n.d.). Viscosity. The Physics Hypertextbook. https://physics.info/viscosity/ 



 

Apparatus & Material 

Apparatus Properties Quantity 

Flask 

Measurements up to 100.0cm3 

Connector and valve at the bottom 

Closed flask connected to VS 

2 

Stopwatch Least count: 0.1s 1 

Digital Manometer Least count: 1kPa 2 

Vacuum System (VS) - 2 

Table 1. Apparatus and properties 

Material Properties Quantity 

Tubes 

Radii: (1.25, 1.50, 1.75, 2.00, 2.25, 2.50) 

mm 

Length: 15.0cm 

5 

Water Relatively pure - 

Table 2. Materials and properties 

 

Method: 

  



Procedure: 

1) Connect tube of 1.25mm radius between both flasks 

2) Enter 50.0cm3 water in container flask 

3) Close container flask lid and set pressure for the left VS to 1000kPa 

4) Open the water valve and start timer instantaneously 

5) Stop timer when container flask has 0.0cm3 water left 

6) Calculate volume flow rate by 
𝑉

𝑡
  

7) If volume flow rate is not approximately 5cm3s-1 then regulate the right VS (increase or 

decrease pressure depending on equation 2)  

8) Repeat steps 2-6 until volume flow rate is 5cm3s-1 approximately 

9) Record the reading on manometer and turn off VC 

10) Repeat steps 2-8 at least 3 times 

11) Repeat steps 2-10 with tube of radius: (1.50, 1.75, 2.00, 2.25, 2.50) mm 

 

Risk assessment 

In the experiment there are no major risk assessments; The liquid used is not hazardous and 

there are no sharp objects to be concerned about. Liquid spills may be dangerous causing one to 

lose their balance and slip, so a dry cloth should be kept. When preparing for the experiment, tubes 

must be cut to a certain length, hence scissors must be used carefully to avoid casualties. Finally 

glass flasks must be handled carefully as if it were to be dropped, it would shatter creating many 

sharp glass shards. Further, the water will be reused as throughout the experiment with minimal 

wastage and will be drained into the fields after use. Overall, there are no environmental and ethical 

concerns in the experiment, thus we can conclude that this is a safe experiment.  

 

Qualitative Assessment 

- Throughout the day of data collection, temperature in the room often fluctuated between 19°C 

and 21°C when measured through a thermometer. The experiment was halted until the 

temperature remained a steady 20°C. 

 

- The receptor flask lid contraption quickly proved to be insufficient to hold the rarefaction of air 

as small leakages around the lid kept the flask from lowering its pressure. Blu-Tack (a putty 

like adhesive) was then applied around the lid every time the vacuum system was in use. 

 

- The volume flow rate was not entirely constant throughout the flow of water from one flask to 

the other because as the water left the container flask, the pressure of the container flask 

struggled to stay at a constant of 1000kPa and dipped by 20kPa when the valve was first opened. 

This dip was negligible as in the first 3 seconds the pressure rose back to 1000kPa as the vacuum 

system began accounting for the difference. 

 



Data collection & analysis 

 Pressure (𝑃 ± 1) kPa  

Radius of Tube 

(𝑟 ± 0.01) mm 
Trial 1 Trial 2 Trial 3 

Mean Pressure  

𝑃 kPa 

1.25 221 223 216 220 ± 5 

1.50 626 624 620 623 ± 4 

1.75 792 796 797 795 ± 4 

2.00 878 876 879 878 ± 3 

2.25 927 924 923 925 ± 3 

2.50 953 950 957 953 ± 4 

Table 3. Radius and corresponding pressure (𝑃) at right VS  

 

 

 

 

 

 

 

 

 

 

 

Radius of Tube 

(𝑟 ± 0.01) mm 

Mean Pressure Difference 

∆𝑃 kPa 

1.25 780 ± 6 

1.50 377 ± 5 

1.75 205 ± 5 

2.00 122 ± 4 

2.25 75 ± 4 

2.50 47 ± 5 

Table 4. Radius and corresponding mean pressure difference (∆𝑃)  

Calculations for table 3: 

The mean pressure was calculated using the formula: 

𝑃1 + 𝑃2 + 𝑃3

3
   

The uncertainty of the mean pressure was calculated using the formula 

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

2
+ 𝑃𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 

Sample calculation of mean pressure for 𝑟 = 1.25mm: 

Average =  
221+223+216

3
≈ 220 kPa (0 decimal places) 

Uncertainty =  
223−216

2
+ 1 =  4.5 ≈ 5 kPa (0 decimal places) 

Here, 1 is added due to the uncertainty in the measurement of pressure (digital manometer). 

 



 

 

 

 

 

 

 

 

𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑇𝑢𝑏𝑒)  

𝑙𝑜𝑔(𝑟) No unit 

𝑙𝑜𝑔(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

𝑙𝑜𝑔(∆𝑃) No unit 

0.0969 ± 0.0035 2.892 ± 0.003 

0.1761 ± 0.0029 2.576 ± 0.006 

0.2430 ± 0.0025 2.312 ± 0.011 

0.3010 ± 0.0022 2.086 ± 0.014 

0.3522 ± 0.0019 1.875 ± 0.023 

0.3979 ± 0.0017 1.672 ± 0.046 

Table 5. Converting the data into logarithmic form 

  

Calculations for table 4: 

The mean pressure difference was calculated using the formula using values from table 3: 

(Pressure at left VS) − 𝑃 

Sample calculation of mean difference pressure for 𝑟 = 1.25mm: 

Pressure difference = 1000 − 220 = 780 kPa 

Uncertainty of mean pressure adds with the uncertainty in measurement of left VC (1kPa). 

Uncertainty =  4 + 1 = 5 kPa 

Calculations for table 5: 

The 𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑇𝑢𝑏𝑒) was calculated from the formula below using table 3: 

𝑙𝑜𝑔10(𝑟) 

Uncertainty for 𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑇𝑢𝑏𝑒)was calculated from the formula below using table 3: 

𝑙𝑜𝑔10 (
𝑟 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑜𝑓 𝑟
𝑟 − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑜𝑓 𝑟

)

2
 

Sample calculation of 𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑇𝑢𝑏𝑒) for 𝑟 = 1.25mm: 

𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑇𝑢𝑏𝑒) = 𝑙𝑜𝑔10(1.25) ≈ 0.0969 (4 decimal places) 

Uncertainty = 
𝑙𝑜𝑔10(

1.26

1.24
)

2
≈ 0.0035 (4 decimal places) 

Continued next page… 



 

 

 

 

 

 

 

 

 

 

Graphical analysis 

 

Graph 1. Mean pressure difference(kPa) vs Radius of Tube(mm) with a quartic LOBF 

The error bars for the mean pressure difference are very small and thus are not visible. From 

the data collected and plotted, the graph supports a quartic relationship. This can be realized by 

seeing that Graph 1, with a quartic line of best fit (LOBF), intersects all 6 plotted error bars. This 

is consistent with the hypothesis, in that there is an inverse quartic relationship between the 

radius and pressure difference. However, as Graph 1 suggests, the equation of the line mapped 

(top right) also includes the coefficients of x3, x2, and x, meaning that there are in fact sources of 

error, and its effects can be visualized. 
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𝑙𝑜𝑔(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) was calculated from the formula below using table 3: 

𝑙𝑜𝑔10(∆𝑃) 

Uncertainty for 𝑙𝑜𝑔(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) was calculated from the formula below 

using table 3: 

𝑙𝑜𝑔10 (
∆𝑃 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑜𝑓 ∆𝑃
∆𝑃 − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑜𝑓 ∆𝑃

)

2
 

Sample calculation of 𝑙𝑜𝑔(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) for 𝑟 = 1.25mm: 

𝑙𝑜𝑔(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) = 𝑙𝑜𝑔10(780) ≈ 2.892 (3 decimal places) 

Uncertainty = 
𝑙𝑜𝑔10(

785

775
)

2
≈ 0.003 (3 decimal places) 

 



 

Graph 2. 𝑙𝑜𝑔(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) vs 𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠) with max, min and normal LOBF 

 

 

 

 

 

 

 

 

The LOBF is a negative linear graph and intersects all plotted error bars. The LOBF gradient 

can be written as -4.024 ± 0.235, and the y-intercept can be written as 3.287 ± 0.080. The minima 

LOBF and maxima LOBF represent a 5.8% uncertainty in the gradient and 2.4% uncertainty in 

the y-intercept which can be attributed to random error as precision is relatively low. 

The value of 𝑅2, the square of the correlation coefficient, is 0.99965. 𝑅2 evaluates the strength 

of the relationship between two variables. This value can be assessed using the table below, where 

we can infer that the experiment provided data has a very strong correlation, thus low systematic 

error. 

Range of R2 Strength of Correlation 

Below 0.49 Weak 

0.50 to 0.69 Moderate 

0.70 to 0.89 Strong 

0.90 to 1.00 Very strong 

Table 6. 𝑅2 and its corresponding strength of relationship 

LOBF = -4.0244x + 3.2866

Minima LOBF = -3.822x + 3.2457

Maxima LOBF = -4.2924x + 3.3263
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𝑙𝑜𝑔(𝑅𝑎𝑑𝑖𝑢𝑠 of Tube) No Unit 

Processing of Graph 2 Data 

Gradient = -4.024 

Minima Gradient = -3.822 

Maxima Gradient = -4.292 

Gradient Uncertainty = 
−4.292+3.822

2
 = ±0.235 

Gradient Percent Uncertainty = 
−0.235∗100

−4.024
 = 5.8% 

Gradient Percent Error = 
(−4.024+4)∗100

−4
 = 0.6% 

 

y-intercept = 3.287 

Minima y-intercept = 3.246 

Maxima y-intercept = 3.326 

y-intercept Uncertainty = 
3.326−3.246

2
 = ±0.080 

y-intercept Percent Uncertainty = 
0.080∗100

3.287
 = 2.4% 

y-intercept Percent Error = 
(3.287−3.281)∗100

3.281
 = 0.2% 



              𝑙𝑜𝑔 (∆𝑃)  =  −4𝑙𝑜𝑔 𝑟 + 𝑙𝑜𝑔 𝑘   (Equation 5) 

             ∆𝑃 =  
𝑄8ηL

𝜋𝑟4    (Equation 2) 

Since 𝑘 =  
𝑄8ηL

𝜋
, the units for equation 2 can be substituted as (where k’s units are unknown) 

𝑃𝑎 =  
𝑘

𝑚𝑚4
≈ 𝑘 = 𝑚𝑚4𝑃𝑎 

Thus, calculating k gives 
𝑄8ηL

𝜋
=  

5000∗8∗1∗150

𝜋
≈ 1.910 ∗ 106 𝑚𝑚4𝑃𝑎. Then, converting the 

units to  𝑚𝑚4𝑘𝑃𝑎 to make the pascal unit the same as the data gathered gives 𝑘 =

1910 𝑚𝑚4𝑘𝑃𝑎. Finally logging this value gives 𝑙𝑜𝑔(𝑘) ≈ 3.281 which is the literature y-

intercept. According to the equation 5, the literature gradient is -4.  Both calculated gradient and 

y-intercept in the graph fall within the range of error seen in graph 2 and, hence, the data collected 

is consistent with the hypothesis. Equation 5 can then be accepted. 
 

Conclusion 

After collecting, processing and analyzing the data, the results can confirm the hypothesis. 

“The pressure difference ∆𝑃 will decrease as the radius 𝑟 is increased” can be supported by looking 

at graph 1 and 2, where this is evident in the form of a negative correlation. To linearize the 

equation, both sides were logged, and l𝑜𝑔 (𝑀𝑒𝑎𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) was plotted against 

l𝑜𝑔 (𝑟𝑎𝑑𝑖𝑢𝑠) in graph 2. The line of best fit clearly indicated a linear relationship between 𝑙𝑜𝑔(∆𝑃) 

and 𝑙𝑜𝑔(𝑟), which is directly supported by the hypothesis. According to the hypothesis, the gradient 

of the line of best fit of graph 2 should be -4. This was supported by the data because the gradient 

fell within range of error of the line of best fit. The hypothesis also indicated that the y-intercept 

will be at “point (0, 𝑙𝑜𝑔 𝑘),” which also supported as the calculated y-intercept fell within the range 

of error of the line of best fit. Graph 1 and 2 also revealed that there was an inverse quartic 

relationship that could be seen when the mean pressure difference was plotted against the radius 

of the tube. Thus, all points in the hypothesis were confirmed. 

On one hand, it can be observed that the experiment had relatively high accuracy, determined 

by comparing the calculated values to the results. This demonstrates that there was a relatively low 

percentage systematic error within the experiment, proving that the experiment design was 

successful. On the other hand, however, we can see that the precision of the experiment was 

relatively low for table 4, 5 and graph 2, attributed due to the fact that some of the pressure trials 

for a certain radius had the range of uncertainty up to 12 kPa. This led to the uncertainty in the 

LOBF in graph 2 to be 5.8% in value. This means there was comparatively higher percent random 

error than percent systematic error. A few factors may have played into this like the reaction time 

or not being able to precisely perceive when there is exactly no more water left in the container 

flask; these conditions will be explored further in the evaluation.  

Overall, the research question “To what extent does a change in the radius of a tube affect 

the pressure difference at both its ends when the volume flow rate is constant?” was 

effectively answered and was worth investigating, where the final equation, that was result of the 

experiment, can be expressed in the form:  𝑙𝑜𝑔 ∆𝑃  =  (−4.024 ±  0.235)𝑙𝑜𝑔 𝑟 + (3.287 ±  0.080) 



Evaluation 

Strengths of the experiment 

This experiment exhibits very low systematic error, up to only 0.6%, proving that the 

experiment designed was incredibly accurate and effective. With the use of modulated vacuum 

systems on both container flasks, the experiment was actively controlled and altered to keep the 

pressure difference consistent, which wouldn’t be the case if one of the flasks was kept open due 

to air conditioning wind currents or pressure inaccuracies due to temperature. Further, attention to 

detail to the smallest variables was a priority in my experiment such as taking precautions like 

regularly checking the temperature and waiting until the temperature stabilizes or using putty to 

minimize pressure inaccuracies all contributed in substantially lowering systematic errors during 

the experiment. 
 

Weaknesses of the experiment 

Source of error & effects Significance & evidence Possible improvements 

Systematic errors affecting accuracy 

Volume flow rate: This wasn’t 

consistent as the pressure 

difference deviated by 20kPa 

when the valve was first opened. 

Low significance: 

- The vacuum system accounted 

for the decrease in pressure in 

the first 3 seconds, so the 

results were not affected much. 

Use a vacuum system which is 

more responsive to changes in 

the pressure, thus stabilizing the 

decrease in pressure more 

quickly. 

Temperature of water in tubes: 

In smaller radius tubes the 

pressure and speed of the water 

is higher, and thus experiences 

more friction than its larger 

counterpart. 

Low significance: 

- The temperature change is 

negligible and thus any 

systematic error is 

unnoticeable. 

Utilize tubes which are smooth 

and have a high heat capacity, 

allowing for heat to get 

absorbed. 

Radius of tube: The radius 

within the tube may not be of 

linear radius, shifting results 

slightly in either direction. 

Low significance: 

- If the radius of the tube was 

not consistent then the plotted 

mean pressure difference 

against radius would be 

noticeably skewed. 

Fill tube with water. Remove 

water in flask. Measure volume 

then use the formula 𝑟 = √
𝑉

𝜋ℎ
   

to confirm radius is accurate. 

Limited amount of data: There 

were 6 radii used in the 

experiment for 3 trials. Less 

trials means lower accuracy 

given in results 

Low significance: 

- The number of trials done, and 

radii used proved sufficient to 

confirm the hypothesis. 

Take up to 12 varied radii of 

tubes and use 9 trials. 



Random errors affecting precision 

Reaction time: Led to stopwatch 

being clicked too late and to the 

wrong calculation of volume 

flow, affecting the pressure 

difference values collected. 

High significance:  

- Some pressure trials in table 4 

had range of up to 12kPa 

leading to high gradient 

uncertainty in graph 2 LOBF. 

Take a video of the water 

emptying out. Review footage 

on computer to get exact value 

of time taken. 

Stopwatch precision: The 

stopwatch had an uncertainty of 

0.1s, which gives a inaccurate 

value for volume flow rate 

Low significance: 

- Uncertainty of 0.1s translates 

to a less than 1% relative 

uncertainty. 

Put dark food coloring into the 

water and add a light sensor at 

the end of the tube, which will 

give time to the nearest 0.001s. 

Barometer precision: The digital 

barometer had an uncertainty of 

1kPa, which gives an inaccurate 

value for pressure 

Moderate significance: 

- Uncertainty of 1kPa leads to 
1∗100

47
 = 1.2% percentage 

uncertainty for pressure 

difference in 2.5mm radius 

tube. 

Use a new digital barometer of 

lower uncertainty. 

Volume flow rate: The value for 

volume flow rate was used if it’s 

within 0.1cm3s-1, resulting in 

inaccurate pressure readings 

Moderate significance: 

- Uncertainty of 0.1cm3s-1 leads 

to 
0.1∗100

5.0
  = 2% percentage 

uncertainty. 

Be more stringent on the volume 

flow rate, only using them if 

within a smaller range than 

0.1cm3s-1, would reduce this 

error. 
 

Table 6. Weaknesses and limitations effecting results and its improvements  

Further research suggestions 

The relationship between the pressure difference between both ends of a 

tube and linear obstruction in the tube can be tested. This would more closely 

resemble the real-life scenario of narrowed blood vessels by plaque. This can 

be more clearly seen in the figure 3 where the lighter gray is the flow area.  

In this experiment, large tubes of the same radius will be taken, where 

each tube will contain a circle segment of clay throughout the tube as shown in 

figure 3. The 𝜃 of the segment will be the independent variable and will be 

increased from 0, the pressure difference between the ends of the tube will be 

the dependent variable will be measured, and the volume flow rate will be kept 

constant. The rest of the experiment will be performed the same. 
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